6.7.8.1.2. statsmodels.sandbox.regression.predstd.wls_prediction_std¶
-
statsmodels.sandbox.regression.predstd.
wls_prediction_std
(res, exog=None, weights=None, alpha=0.05)[source]¶ calculate standard deviation and confidence interval for prediction
applies to WLS and OLS, not to general GLS, that is independently but not identically distributed observations
Parameters: res : regression result instance
results of WLS or OLS regression required attributes see notes
exog : array_like (optional)
exogenous variables for points to predict
weights : scalar or array_like (optional)
weights as defined for WLS (inverse of variance of observation)
alpha : float (default: alpha = 0.05)
confidence level for two-sided hypothesis
Returns: predstd : array_like, 1d
standard error of prediction same length as rows of exog
interval_l, interval_u : array_like
lower und upper confidence bounds
Notes
The result instance needs to have at least the following res.model.predict() : predicted values or res.fittedvalues : values used in estimation res.cov_params() : covariance matrix of parameter estimates
If exog is 1d, then it is interpreted as one observation, i.e. a row vector.
testing status: not compared with other packages
References
Greene p.111 for OLS, extended to WLS by analogy