7.12.1.4. statsmodels.sandbox.regression.gmm.IVGMM¶
-
class
statsmodels.sandbox.regression.gmm.
IVGMM
(endog, exog, instrument, k_moms=None, k_params=None, missing='none', **kwds)[source]¶ Basic class for instrumental variables estimation using GMM
A linear function for the conditional mean is defined as default but the methods should be overwritten by subclasses, currently LinearIVGMM and NonlinearIVGMM are implemented as subclasses.
See also
maybe drop and use mixin instead
TODO: GMM doesn’t really care about the data, just the moment conditions
-
__init__
(endog, exog, instrument, k_moms=None, k_params=None, missing='none', **kwds)¶ maybe drop and use mixin instead
TODO: GMM doesn’t really care about the data, just the moment conditions
Methods
__init__
(endog, exog, instrument[, k_moms, ...])maybe drop and use mixin instead calc_weightmatrix
(moms[, weights_method, ...])calculate omega or the weighting matrix fit
([start_params, maxiter, inv_weights, ...])Estimate parameters using GMM and return GMMResults fitgmm
(start[, weights, optim_method, ...])estimate parameters using GMM fitgmm_cu
(start[, optim_method, optim_args])estimate parameters using continuously updating GMM fititer
(start[, maxiter, start_invweights, ...])iterative estimation with updating of optimal weighting matrix fitstart
()from_formula
(formula, data[, subset])Create a Model from a formula and dataframe. get_error
(params)gmmobjective
(params, weights)objective function for GMM minimization gmmobjective_cu
(params[, weights_method, wargs])objective function for continuously updating GMM minimization gradient_momcond
(params[, epsilon, centered])gradient of moment conditions momcond
(params)momcond_mean
(params)mean of moment conditions, predict
(params[, exog])score
(params, weights[, epsilon, centered])score_cu
(params[, epsilon, centered])start_weights
([inv])Attributes
endog_names
exog_names
results_class
-