7.8.2.3.3. statsmodels.tsa.vector_ar.dynamic.DynamicVAR¶
-
class
statsmodels.tsa.vector_ar.dynamic.
DynamicVAR
(data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None)[source]¶ Estimates time-varying vector autoregression (VAR(p)) using equation-by-equation least squares
Parameters: data : pandas.DataFrame
lag_order : int, default 1
window : int
window_type : {‘expanding’, ‘rolling’}
min_periods : int or None
Minimum number of observations to require in window, defaults to window size if None specified
trend : {‘c’, ‘nc’, ‘ct’, ‘ctt’}
TODO
Returns: Attributes:
coefs : WidePanel
items : coefficient names major_axis : dates minor_axis : VAR equation names
-
__init__
(data, lag_order=1, window=None, window_type='expanding', trend='c', min_periods=None)[source]¶
Methods
T
()Number of time periods in results __init__
(data[, lag_order, window, ...])coefs
()Return dynamic regression coefficients as WidePanel equations
()forecast
([steps])Produce dynamic forecast plot_forecast
([steps, figsize])Plot h-step ahead forecasts against actual realizations of time series. r2
()Returns the r-squared values. resid
()Attributes
nobs
result_index
-