7.8.2.2.4. statsmodels.tsa.arima_model.ARIMAResults¶
-
class
statsmodels.tsa.arima_model.
ARIMAResults
(model, params, normalized_cov_params=None, scale=1.0)[source]¶ -
__init__
(model, params, normalized_cov_params=None, scale=1.0)¶
Methods
__init__
(model, params[, ...])aic
()arfreq
()Returns the frequency of the AR roots. arparams
()arroots
()bic
()bse
()conf_int
([alpha, cols, method])Returns the confidence interval of the fitted parameters. cov_params
()f_test
(r_matrix[, cov_p, scale, invcov])Compute the F-test for a joint linear hypothesis. fittedvalues
()forecast
([steps, exog, alpha])Out-of-sample forecasts hqic
()initialize
(model, params, **kwd)llf
()load
(fname)load a pickle, (class method) mafreq
()Returns the frequency of the MA roots. maparams
()maroots
()normalized_cov_params
()plot_predict
([start, end, exog, dynamic, ...])Plot forecasts predict
([start, end, exog, typ, dynamic])ARIMA model in-sample and out-of-sample prediction pvalues
()remove_data
()remove data arrays, all nobs arrays from result and model resid
()save
(fname[, remove_data])save a pickle of this instance summary
([alpha])Summarize the Model summary2
([title, alpha, float_format])Experimental summary function for ARIMA Results t_test
(r_matrix[, cov_p, scale, use_t])Compute a t-test for a each linear hypothesis of the form Rb = q tvalues
()Return the t-statistic for a given parameter estimate. wald_test
(r_matrix[, cov_p, scale, invcov, ...])Compute a Wald-test for a joint linear hypothesis. Attributes
use_t
-