3.5.3.3. scipy.interpolate.LSQUnivariateSpline¶
-
class
scipy.interpolate.
LSQUnivariateSpline
(x, y, t, w=None, bbox=[None, None], k=3, ext=0, check_finite=False)[source]¶ One-dimensional spline with explicit internal knots.
Fits a spline y = spl(x) of degree k to the provided x, y data. t specifies the internal knots of the spline
Parameters: x : (N,) array_like
Input dimension of data points – must be increasing
y : (N,) array_like
Input dimension of data points
t : (M,) array_like
interior knots of the spline. Must be in ascending order and:
bbox[0] < t[0] < ... < t[-1] < bbox[-1]
w : (N,) array_like, optional
weights for spline fitting. Must be positive. If None (default), weights are all equal.
bbox : (2,) array_like, optional
2-sequence specifying the boundary of the approximation interval. If None (default),
bbox = [x[0], x[-1]]
.k : int, optional
Degree of the smoothing spline. Must be 1 <= k <= 5. Default is k=3, a cubic spline.
ext : int or str, optional
Controls the extrapolation mode for elements not in the interval defined by the knot sequence.
- if ext=0 or ‘extrapolate’, return the extrapolated value.
- if ext=1 or ‘zeros’, return 0
- if ext=2 or ‘raise’, raise a ValueError
- if ext=3 of ‘const’, return the boundary value.
The default value is 0.
check_finite : bool, optional
Whether to check that the input arrays contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination or non-sensical results) if the inputs do contain infinities or NaNs. Default is False.
Raises: ValueError
If the interior knots do not satisfy the Schoenberg-Whitney conditions
See also
UnivariateSpline
- Superclass – knots are specified by setting a smoothing condition
InterpolatedUnivariateSpline
- spline passing through all points
splrep
- An older, non object-oriented wrapping of FITPACK
BivariateSpline
- A similar class for two-dimensional spline interpolation
Notes
The number of data points must be larger than the spline degree k.
Knots t must satisfy the Schoenberg-Whitney conditions, i.e., there must be a subset of data points
x[j]
such thatt[j] < x[j] < t[j+k+1]
, forj=0, 1,...,n-k-2
.Examples
>>> from scipy.interpolate import LSQUnivariateSpline >>> import matplotlib.pyplot as plt >>> x = np.linspace(-3, 3, 50) >>> y = np.exp(-x**2) + 0.1 * np.random.randn(50)
Fit a smoothing spline with a pre-defined internal knots:
>>> t = [-1, 0, 1] >>> spl = LSQUnivariateSpline(x, y, t)
>>> xs = np.linspace(-3, 3, 1000) >>> plt.plot(x, y, 'ro', ms=5) >>> plt.plot(xs, spl(xs), 'g-', lw=3) >>> plt.show()
Check the knot vector:
>>> spl.get_knots() array([-3., -1., 0., 1., 3.])
Methods
__init__
(x, y, t[, w, bbox, k, ext, ...])antiderivative
([n])Construct a new spline representing the antiderivative of this spline. derivative
([n])Construct a new spline representing the derivative of this spline. derivatives
(x)Return all derivatives of the spline at the point x. get_coeffs
()Return spline coefficients. get_knots
()Return positions of interior knots of the spline. get_residual
()Return weighted sum of squared residuals of the spline approximation. integral
(a, b)Return definite integral of the spline between two given points. roots
()Return the zeros of the spline. set_smoothing_factor
(s)Continue spline computation with the given smoothing factor s and with the knots found at the last call.