5.1.8.3. scipy.signal.tf2ss¶
-
scipy.signal.
tf2ss
(num, den)[source]¶ Transfer function to state-space representation.
Parameters: num, den : array_like
Sequences representing the numerator and denominator polynomials. The denominator needs to be at least as long as the numerator.
Returns: A, B, C, D : ndarray
State space representation of the system, in controller canonical form.
Examples
Convert the transfer function:
\[H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}\]>>> num = [1, 3, 3] >>> den = [1, 2, 1]
to the state-space representation:
\[\begin{split}\dot{\textbf{x}}(t) = \begin{bmatrix} -2 & -1 \\ 1 & 0 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \textbf{u}(t) \\\end{split}\]\[\begin{split}\textbf{y}(t) = \begin{bmatrix} 1 & 2 \end{bmatrix} \textbf{x}(t) + \begin{bmatrix} 1 \end{bmatrix} \textbf{u}(t)\end{split}\]>>> from scipy.signal import tf2ss >>> A, B, C, D = tf2ss(num, den) >>> A array([[-2., -1.], [ 1., 0.]]) >>> B array([[ 1.], [ 0.]]) >>> C array([[ 1., 2.]]) >>> D array([ 1.])