4.3. Multi-dimensional image processing (scipy.ndimage
)¶
This package contains various functions for multi-dimensional image processing.
4.3.1. Filters¶
convolve (input, weights[, output, mode, ...]) |
Multidimensional convolution. |
convolve1d (input, weights[, axis, output, ...]) |
Calculate a one-dimensional convolution along the given axis. |
correlate (input, weights[, output, mode, ...]) |
Multi-dimensional correlation. |
correlate1d (input, weights[, axis, output, ...]) |
Calculate a one-dimensional correlation along the given axis. |
gaussian_filter (input, sigma[, order, ...]) |
Multidimensional Gaussian filter. |
gaussian_filter1d (input, sigma[, axis, ...]) |
One-dimensional Gaussian filter. |
gaussian_gradient_magnitude (input, sigma[, ...]) |
Multidimensional gradient magnitude using Gaussian derivatives. |
gaussian_laplace (input, sigma[, output, ...]) |
Multidimensional Laplace filter using gaussian second derivatives. |
generic_filter (input, function[, size, ...]) |
Calculates a multi-dimensional filter using the given function. |
generic_filter1d (input, function, filter_size) |
Calculate a one-dimensional filter along the given axis. |
generic_gradient_magnitude (input, derivative) |
Gradient magnitude using a provided gradient function. |
generic_laplace (input, derivative2[, ...]) |
N-dimensional Laplace filter using a provided second derivative function |
laplace (input[, output, mode, cval]) |
N-dimensional Laplace filter based on approximate second derivatives. |
maximum_filter (input[, size, footprint, ...]) |
Calculates a multi-dimensional maximum filter. |
maximum_filter1d (input, size[, axis, ...]) |
Calculate a one-dimensional maximum filter along the given axis. |
median_filter (input[, size, footprint, ...]) |
Calculates a multidimensional median filter. |
minimum_filter (input[, size, footprint, ...]) |
Calculates a multi-dimensional minimum filter. |
minimum_filter1d (input, size[, axis, ...]) |
Calculate a one-dimensional minimum filter along the given axis. |
percentile_filter (input, percentile[, size, ...]) |
Calculates a multi-dimensional percentile filter. |
prewitt (input[, axis, output, mode, cval]) |
Calculate a Prewitt filter. |
rank_filter (input, rank[, size, footprint, ...]) |
Calculates a multi-dimensional rank filter. |
sobel (input[, axis, output, mode, cval]) |
Calculate a Sobel filter. |
uniform_filter (input[, size, output, mode, ...]) |
Multi-dimensional uniform filter. |
uniform_filter1d (input, size[, axis, ...]) |
Calculate a one-dimensional uniform filter along the given axis. |
4.3.2. Fourier filters¶
fourier_ellipsoid (input, size[, n, axis, output]) |
Multi-dimensional ellipsoid fourier filter. |
fourier_gaussian (input, sigma[, n, axis, output]) |
Multi-dimensional Gaussian fourier filter. |
fourier_shift (input, shift[, n, axis, output]) |
Multi-dimensional fourier shift filter. |
fourier_uniform (input, size[, n, axis, output]) |
Multi-dimensional uniform fourier filter. |
4.3.3. Interpolation¶
affine_transform (input, matrix[, offset, ...]) |
Apply an affine transformation. |
geometric_transform (input, mapping[, ...]) |
Apply an arbritrary geometric transform. |
map_coordinates (input, coordinates[, ...]) |
Map the input array to new coordinates by interpolation. |
rotate (input, angle[, axes, reshape, ...]) |
Rotate an array. |
shift (input, shift[, output, order, mode, ...]) |
Shift an array. |
spline_filter (input[, order, output]) |
Multi-dimensional spline filter. |
spline_filter1d (input[, order, axis, output]) |
Calculates a one-dimensional spline filter along the given axis. |
zoom (input, zoom[, output, order, mode, ...]) |
Zoom an array. |
4.3.4. Measurements¶
center_of_mass (input[, labels, index]) |
Calculate the center of mass of the values of an array at labels. |
extrema (input[, labels, index]) |
Calculate the minimums and maximums of the values of an array at labels, along with their positions. |
find_objects (input[, max_label]) |
Find objects in a labeled array. |
histogram (input, min, max, bins[, labels, index]) |
Calculate the histogram of the values of an array, optionally at labels. |
label (input[, structure, output]) |
Label features in an array. |
labeled_comprehension (input, labels, index, ...) |
Roughly equivalent to [func(input[labels == i]) for i in index]. |
maximum (input[, labels, index]) |
Calculate the maximum of the values of an array over labeled regions. |
maximum_position (input[, labels, index]) |
Find the positions of the maximums of the values of an array at labels. |
mean (input[, labels, index]) |
Calculate the mean of the values of an array at labels. |
median (input[, labels, index]) |
Calculate the median of the values of an array over labeled regions. |
minimum (input[, labels, index]) |
Calculate the minimum of the values of an array over labeled regions. |
minimum_position (input[, labels, index]) |
Find the positions of the minimums of the values of an array at labels. |
standard_deviation (input[, labels, index]) |
Calculate the standard deviation of the values of an n-D image array, optionally at specified sub-regions. |
sum (input[, labels, index]) |
Calculate the sum of the values of the array. |
variance (input[, labels, index]) |
Calculate the variance of the values of an n-D image array, optionally at specified sub-regions. |
watershed_ift (input, markers[, structure, ...]) |
Apply watershed from markers using image foresting transform algorithm. |
4.3.5. Morphology¶
binary_closing (input[, structure, ...]) |
Multi-dimensional binary closing with the given structuring element. |
binary_dilation (input[, structure, ...]) |
Multi-dimensional binary dilation with the given structuring element. |
binary_erosion (input[, structure, ...]) |
Multi-dimensional binary erosion with a given structuring element. |
binary_fill_holes (input[, structure, ...]) |
Fill the holes in binary objects. |
binary_hit_or_miss (input[, structure1, ...]) |
Multi-dimensional binary hit-or-miss transform. |
binary_opening (input[, structure, ...]) |
Multi-dimensional binary opening with the given structuring element. |
binary_propagation (input[, structure, mask, ...]) |
Multi-dimensional binary propagation with the given structuring element. |
black_tophat (input[, size, footprint, ...]) |
Multi-dimensional black tophat filter. |
distance_transform_bf (input[, metric, ...]) |
Distance transform function by a brute force algorithm. |
distance_transform_cdt (input[, metric, ...]) |
Distance transform for chamfer type of transforms. |
distance_transform_edt (input[, sampling, ...]) |
Exact euclidean distance transform. |
generate_binary_structure (rank, connectivity) |
Generate a binary structure for binary morphological operations. |
grey_closing (input[, size, footprint, ...]) |
Multi-dimensional greyscale closing. |
grey_dilation (input[, size, footprint, ...]) |
Calculate a greyscale dilation, using either a structuring element, or a footprint corresponding to a flat structuring element. |
grey_erosion (input[, size, footprint, ...]) |
Calculate a greyscale erosion, using either a structuring element, or a footprint corresponding to a flat structuring element. |
grey_opening (input[, size, footprint, ...]) |
Multi-dimensional greyscale opening. |
iterate_structure (structure, iterations[, ...]) |
Iterate a structure by dilating it with itself. |
morphological_gradient (input[, size, ...]) |
Multi-dimensional morphological gradient. |
morphological_laplace (input[, size, ...]) |
Multi-dimensional morphological laplace. |
white_tophat (input[, size, footprint, ...]) |
Multi-dimensional white tophat filter. |