4.5.5.6. scipy.optimize.LbfgsInvHessProduct

class scipy.optimize.LbfgsInvHessProduct(sk, yk)[source]

Linear operator for the L-BFGS approximate inverse Hessian.

This operator computes the product of a vector with the approximate inverse of the Hessian of the objective function, using the L-BFGS limited memory approximation to the inverse Hessian, accumulated during the optimization.

Objects of this class implement the scipy.sparse.linalg.LinearOperator interface.

Parameters:

sk : array_like, shape=(n_corr, n)

Array of n_corr most recent updates to the solution vector. (See [1]).

yk : array_like, shape=(n_corr, n)

Array of n_corr most recent updates to the gradient. (See [1]).

References

[R133]Nocedal, Jorge. “Updating quasi-Newton matrices with limited storage.” Mathematics of computation 35.151 (1980): 773-782.
__init__(sk, yk)[source]

Construct the operator.

Methods

__init__(sk, yk) Construct the operator.
adjoint() Hermitian adjoint.
dot(x) Matrix-matrix or matrix-vector multiplication.
matmat(X) Matrix-matrix multiplication.
matvec(x) Matrix-vector multiplication.
rmatvec(x) Adjoint matrix-vector multiplication.
todense() Return a dense array representation of this operator.
transpose() Transpose this linear operator.

Attributes

H Hermitian adjoint.
T Transpose this linear operator.