5.1.6.4. scipy.signal.TransferFunction¶
-
class
scipy.signal.
TransferFunction
(*system)[source]¶ Linear Time Invariant system class in transfer function form.
Represents the system as the transfer function \(H(s)=\sum_{i=0}^N b[N-i] s^i / \sum_{j=0}^M a[M-j] s^j\), where \(b\) are elements of the numerator num, \(a\) are elements of the denominator den, and
N == len(b) - 1
,M == len(a) - 1
.Parameters: *system : arguments
The TransferFunction class can be instantiated with 1 or 2 arguments. The following gives the number of input arguments and their interpretation:
- 1: lti system: (StateSpace, TransferFunction or ZerosPolesGain)
- 2: array_like: (numerator, denominator)
See also
Notes
Changing the value of properties that are not part of the TransferFunction system representation (such as the A, B, C, D state-space matrices) is very inefficient and may lead to numerical inaccuracies.
Examples
Construct the transfer function:
\[H(s) = \frac{s^2 + 3s + 3}{s^2 + 2s + 1}\]>>> from scipy import signal >>> num = [1, 3, 3] >>> den = [1, 2, 1] >>> signal.TransferFunction(num, den) TransferFunction( array([ 1., 3., 3.]), array([ 1., 2., 1.]) )
Methods
__init__
(*system)Initialize the state space LTI system. bode
([w, n])Calculate Bode magnitude and phase data of a continuous-time system. freqresp
([w, n])Calculate the frequency response of a continuous-time system. impulse
([X0, T, N])Return the impulse response of a continuous-time system. output
(U, T[, X0])Return the response of a continuous-time system to input U. step
([X0, T, N])Return the step response of a continuous-time system. to_ss
()Convert system representation to StateSpace. to_tf
()Return a copy of the current TransferFunction system. to_zpk
()Convert system representation to ZerosPolesGain. Attributes
A
State matrix of the StateSpace system. B
Input matrix of the StateSpace system. C
Output matrix of the StateSpace system. D
Feedthrough matrix of the StateSpace system. den
Denominator of the TransferFunction system. gain
Gain of the ZerosPolesGain system. num
Numerator of the TransferFunction system. poles
Poles of the ZerosPolesGain system. zeros
Zeros of the ZerosPolesGain system.