5.8.3.54. scipy.stats.levy_stable¶
-
scipy.stats.
levy_stable
= <scipy.stats._continuous_distns.levy_stable_gen object>¶ A Levy-stable continuous random variable.
As an instance of the rv_continuous class, levy_stable object inherits from it a collection of generic methods (see below for the full list), and completes them with details specific for this particular distribution.
Notes
Levy-stable distribution (only random variates available – ignore other docs)
The probability density above is defined in the “standardized” form. To shift and/or scale the distribution use the
loc
andscale
parameters. Specifically,levy_stable.pdf(x, alpha, beta, loc, scale)
is identically equivalent tolevy_stable.pdf(y, alpha, beta) / scale
withy = (x - loc) / scale
.Examples
>>> from scipy.stats import levy_stable >>> import matplotlib.pyplot as plt >>> fig, ax = plt.subplots(1, 1)
Calculate a few first moments:
>>> alpha, beta = 0.357, -0.675 >>> mean, var, skew, kurt = levy_stable.stats(alpha, beta, moments='mvsk')
Display the probability density function (
pdf
):>>> x = np.linspace(levy_stable.ppf(0.01, alpha, beta), ... levy_stable.ppf(0.99, alpha, beta), 100) >>> ax.plot(x, levy_stable.pdf(x, alpha, beta), ... 'r-', lw=5, alpha=0.6, label='levy_stable pdf')
Alternatively, the distribution object can be called (as a function) to fix the shape, location and scale parameters. This returns a “frozen” RV object holding the given parameters fixed.
Freeze the distribution and display the frozen
pdf
:>>> rv = levy_stable(alpha, beta) >>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')
Check accuracy of
cdf
andppf
:>>> vals = levy_stable.ppf([0.001, 0.5, 0.999], alpha, beta) >>> np.allclose([0.001, 0.5, 0.999], levy_stable.cdf(vals, alpha, beta)) True
Generate random numbers:
>>> r = levy_stable.rvs(alpha, beta, size=1000)
And compare the histogram:
>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2) >>> ax.legend(loc='best', frameon=False) >>> plt.show()
Methods
rvs(alpha, beta, loc=0, scale=1, size=1, random_state=None)
Random variates. pdf(x, alpha, beta, loc=0, scale=1)
Probability density function. logpdf(x, alpha, beta, loc=0, scale=1)
Log of the probability density function. cdf(x, alpha, beta, loc=0, scale=1)
Cumulative density function. logcdf(x, alpha, beta, loc=0, scale=1)
Log of the cumulative density function. sf(x, alpha, beta, loc=0, scale=1)
Survival function (also defined as 1 - cdf
, but sf is sometimes more accurate).logsf(x, alpha, beta, loc=0, scale=1)
Log of the survival function. ppf(q, alpha, beta, loc=0, scale=1)
Percent point function (inverse of cdf
— percentiles).isf(q, alpha, beta, loc=0, scale=1)
Inverse survival function (inverse of sf
).moment(n, alpha, beta, loc=0, scale=1)
Non-central moment of order n stats(alpha, beta, loc=0, scale=1, moments='mv')
Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). entropy(alpha, beta, loc=0, scale=1)
(Differential) entropy of the RV. fit(data, alpha, beta, loc=0, scale=1)
Parameter estimates for generic data. expect(func, args=(alpha, beta), loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
Expected value of a function (of one argument) with respect to the distribution. median(alpha, beta, loc=0, scale=1)
Median of the distribution. mean(alpha, beta, loc=0, scale=1)
Mean of the distribution. var(alpha, beta, loc=0, scale=1)
Variance of the distribution. std(alpha, beta, loc=0, scale=1)
Standard deviation of the distribution. interval(alpha, alpha, beta, loc=0, scale=1)
Endpoints of the range that contains alpha percent of the distribution