4.5. Optimization and root finding (scipy.optimize
)¶
4.5.1. Optimization¶
4.5.1.1. Local Optimization¶
minimize (fun, x0[, args, method, jac, hess, ...]) |
Minimization of scalar function of one or more variables. |
minimize_scalar (fun[, bracket, bounds, ...]) |
Minimization of scalar function of one variable. |
OptimizeResult |
Represents the optimization result. |
OptimizeWarning |
The minimize function supports the following methods:
- 4.5.1.1.5. minimize(method=’Nelder-Mead’)
- 4.5.1.1.6. minimize(method=’Powell’)
- 4.5.1.1.7. minimize(method=’CG’)
- 4.5.1.1.8. minimize(method=’BFGS’)
- 4.5.1.1.9. minimize(method=’Newton-CG’)
- 4.5.1.1.10. minimize(method=’L-BFGS-B’)
- 4.5.1.1.11. minimize(method=’TNC’)
- 4.5.1.1.12. minimize(method=’COBYLA’)
- 4.5.1.1.13. minimize(method=’SLSQP’)
- 4.5.1.1.14. minimize(method=’dogleg’)
- 4.5.1.1.15. minimize(method=’trust-ncg’)
The minimize_scalar function supports the following methods:
The specific optimization method interfaces below in this subsection are not recommended for use in new scripts; all of these methods are accessible via a newer, more consistent interface provided by the functions above.
General-purpose multivariate methods:
fmin (func, x0[, args, xtol, ftol, maxiter, ...]) |
Minimize a function using the downhill simplex algorithm. |
fmin_powell (func, x0[, args, xtol, ftol, ...]) |
Minimize a function using modified Powell’s method. |
fmin_cg (f, x0[, fprime, args, gtol, norm, ...]) |
Minimize a function using a nonlinear conjugate gradient algorithm. |
fmin_bfgs (f, x0[, fprime, args, gtol, norm, ...]) |
Minimize a function using the BFGS algorithm. |
fmin_ncg (f, x0, fprime[, fhess_p, fhess, ...]) |
Unconstrained minimization of a function using the Newton-CG method. |
Constrained multivariate methods:
fmin_l_bfgs_b (func, x0[, fprime, args, ...]) |
Minimize a function func using the L-BFGS-B algorithm. |
fmin_tnc (func, x0[, fprime, args, ...]) |
Minimize a function with variables subject to bounds, using gradient information in a truncated Newton algorithm. |
fmin_cobyla (func, x0, cons[, args, ...]) |
Minimize a function using the Constrained Optimization BY Linear Approximation (COBYLA) method. |
fmin_slsqp (func, x0[, eqcons, f_eqcons, ...]) |
Minimize a function using Sequential Least SQuares Programming |
differential_evolution (func, bounds[, args, ...]) |
Finds the global minimum of a multivariate function. |
Univariate (scalar) minimization methods:
fminbound (func, x1, x2[, args, xtol, ...]) |
Bounded minimization for scalar functions. |
brent (func[, args, brack, tol, full_output, ...]) |
Given a function of one-variable and a possible bracketing interval, return the minimum of the function isolated to a fractional precision of tol. |
golden (func[, args, brack, tol, full_output]) |
Return the minimum of a function of one variable. |
4.5.1.2. Equation (Local) Minimizers¶
leastsq (func, x0[, args, Dfun, full_output, ...]) |
Minimize the sum of squares of a set of equations. |
least_squares (fun, x0[, jac, bounds, ...]) |
Solve a nonlinear least-squares problem with bounds on the variables. |
nnls (A, b) |
Solve argmin_x || Ax - b ||_2 for x>=0 . |
lsq_linear (A, b[, bounds, method, tol, ...]) |
Solve a linear least-squares problem with bounds on the variables. |
4.5.1.3. Global Optimization¶
basinhopping (func, x0[, niter, T, stepsize, ...]) |
Find the global minimum of a function using the basin-hopping algorithm |
brute (func, ranges[, args, Ns, full_output, ...]) |
Minimize a function over a given range by brute force. |
differential_evolution (func, bounds[, args, ...]) |
Finds the global minimum of a multivariate function. |
4.5.1.4. Rosenbrock function¶
rosen (x) |
The Rosenbrock function. |
rosen_der (x) |
The derivative (i.e. |
rosen_hess (x) |
The Hessian matrix of the Rosenbrock function. |
rosen_hess_prod (x, p) |
Product of the Hessian matrix of the Rosenbrock function with a vector. |
4.5.2. Fitting¶
curve_fit (f, xdata, ydata[, p0, sigma, ...]) |
Use non-linear least squares to fit a function, f, to data. |
4.5.3. Root finding¶
4.5.3.1. Scalar functions¶
brentq (f, a, b[, args, xtol, rtol, maxiter, ...]) |
Find a root of a function in given interval. |
brenth (f, a, b[, args, xtol, rtol, maxiter, ...]) |
Find root of f in [a,b]. |
ridder (f, a, b[, args, xtol, rtol, maxiter, ...]) |
Find a root of a function in an interval. |
bisect (f, a, b[, args, xtol, rtol, maxiter, ...]) |
Find root of a function within an interval. |
newton (func, x0[, fprime, args, tol, ...]) |
Find a zero using the Newton-Raphson or secant method. |
Fixed point finding:
fixed_point (func, x0[, args, xtol, maxiter, ...]) |
Find a fixed point of the function. |
4.5.3.2. Multidimensional¶
General nonlinear solvers:
root (fun, x0[, args, method, jac, tol, ...]) |
Find a root of a vector function. |
fsolve (func, x0[, args, fprime, ...]) |
Find the roots of a function. |
broyden1 (F, xin[, iter, alpha, ...]) |
Find a root of a function, using Broyden’s first Jacobian approximation. |
broyden2 (F, xin[, iter, alpha, ...]) |
Find a root of a function, using Broyden’s second Jacobian approximation. |
The root function supports the following methods:
- 4.5.3.2.5. root(method=’hybr’)
- 4.5.3.2.6. root(method=’lm’)
- 4.5.3.2.7. root(method=’broyden1’)
- 4.5.3.2.8. root(method=’broyden2’)
- 4.5.3.2.9. root(method=’anderson’)
- 4.5.3.2.10. root(method=’linearmixing’)
- 4.5.3.2.11. root(method=’diagbroyden’)
- 4.5.3.2.12. root(method=’excitingmixing’)
- 4.5.3.2.13. root(method=’krylov’)
- 4.5.3.2.14. root(method=’df-sane’)
Large-scale nonlinear solvers:
newton_krylov (F, xin[, iter, rdiff, method, ...]) |
Find a root of a function, using Krylov approximation for inverse Jacobian. |
anderson (F, xin[, iter, alpha, w0, M, ...]) |
Find a root of a function, using (extended) Anderson mixing. |
Simple iterations:
excitingmixing (F, xin[, iter, alpha, ...]) |
Find a root of a function, using a tuned diagonal Jacobian approximation. |
linearmixing (F, xin[, iter, alpha, verbose, ...]) |
Find a root of a function, using a scalar Jacobian approximation. |
diagbroyden (F, xin[, iter, alpha, verbose, ...]) |
Find a root of a function, using diagonal Broyden Jacobian approximation. |
4.5.4. Linear Programming¶
Simplex Algorithm:
linprog (c[, A_ub, b_ub, A_eq, b_eq, bounds, ...]) |
Minimize a linear objective function subject to linear equality and inequality constraints. |
linprog_verbose_callback (xk, **kwargs) |
A sample callback function demonstrating the linprog callback interface. |
The linprog function supports the following methods:
Assignment problems:
linear_sum_assignment (cost_matrix) |
Solve the linear sum assignment problem. |
4.5.5. Utilities¶
approx_fprime (xk, f, epsilon, *args) |
Finite-difference approximation of the gradient of a scalar function. |
bracket (func[, xa, xb, args, grow_limit, ...]) |
Bracket the minimum of the function. |
check_grad (func, grad, x0, *args, **kwargs) |
Check the correctness of a gradient function by comparing it against a (forward) finite-difference approximation of the gradient. |
line_search (f, myfprime, xk, pk[, gfk, ...]) |
Find alpha that satisfies strong Wolfe conditions. |
show_options ([solver, method, disp]) |
Show documentation for additional options of optimization solvers. |
LbfgsInvHessProduct (sk, yk) |
Linear operator for the L-BFGS approximate inverse Hessian. |