4.1.1.3.21. scipy.linalg.ordqz¶
-
scipy.linalg.
ordqz
(A, B, sort='lhp', output='real', overwrite_a=False, overwrite_b=False, check_finite=True)[source]¶ QZ decomposition for a pair of matrices with reordering.
New in version 0.17.0.
Parameters: A : (N, N) array_like
2d array to decompose
B : (N, N) array_like
2d array to decompose
sort : {callable, ‘lhp’, ‘rhp’, ‘iuc’, ‘ouc’}, optional
Specifies whether the upper eigenvalues should be sorted. A callable may be passed that, given a eigenvalue, returns a boolean denoting whether the eigenvalue should be sorted to the top-left (True). For real matrix pairs, the sort function takes three real arguments (alphar, alphai, beta). The eigenvalue
x = (alphar + alphai*1j)/beta
. For complex matrix pairs or output=’complex’, the sort function takes two complex arguments (alpha, beta). The eigenvaluex = (alpha/beta)
. Alternatively, string parameters may be used:- ‘lhp’ Left-hand plane (x.real < 0.0)
- ‘rhp’ Right-hand plane (x.real > 0.0)
- ‘iuc’ Inside the unit circle (x*x.conjugate() < 1.0)
- ‘ouc’ Outside the unit circle (x*x.conjugate() > 1.0)
output : str {‘real’,’complex’}, optional
Construct the real or complex QZ decomposition for real matrices. Default is ‘real’.
overwrite_a : bool, optional
If True, the contents of A are overwritten.
overwrite_b : bool, optional
If True, the contents of B are overwritten.
check_finite : bool, optional
If true checks the elements of A and B are finite numbers. If false does no checking and passes matrix through to underlying algorithm.
Returns: AA : (N, N) ndarray
Generalized Schur form of A.
BB : (N, N) ndarray
Generalized Schur form of B.
alpha : (N,) ndarray
alpha = alphar + alphai * 1j. See notes.
beta : (N,) ndarray
See notes.
Q : (N, N) ndarray
The left Schur vectors.
Z : (N, N) ndarray
The right Schur vectors.
See also
Notes
On exit,
(ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N
, will be the generalized eigenvalues.ALPHAR(j) + ALPHAI(j)*i
andBETA(j),j=1,...,N
are the diagonals of the complex Schur form (S,T) that would result if the 2-by-2 diagonal blocks of the real generalized Schur form of (A,B) were further reduced to triangular form using complex unitary transformations. If ALPHAI(j) is zero, then the j-th eigenvalue is real; if positive, then thej
-th and(j+1)
-st eigenvalues are a complex conjugate pair, withALPHAI(j+1)
negative.