4.1.1.1.2. scipy.linalg.solve¶
-
scipy.linalg.
solve
(a, b, sym_pos=False, lower=False, overwrite_a=False, overwrite_b=False, debug=False, check_finite=True)[source]¶ Solve the equation
a x = b
forx
.Parameters: a : (M, M) array_like
A square matrix.
b : (M,) or (M, N) array_like
Right-hand side matrix in
a x = b
.sym_pos : bool, optional
Assume a is symmetric and positive definite.
lower : bool, optional
Use only data contained in the lower triangle of a, if sym_pos is true. Default is to use upper triangle.
overwrite_a : bool, optional
Allow overwriting data in a (may enhance performance). Default is False.
overwrite_b : bool, optional
Allow overwriting data in b (may enhance performance). Default is False.
check_finite : bool, optional
Whether to check that the input matrices contain only finite numbers. Disabling may give a performance gain, but may result in problems (crashes, non-termination) if the inputs do contain infinities or NaNs.
Returns: x : (M,) or (M, N) ndarray
Solution to the system
a x = b
. Shape of the return matches the shape of b.Raises: LinAlgError
If a is singular.
ValueError
If a is not square
Examples
Given a and b, solve for x:
>>> a = np.array([[3, 2, 0], [1, -1, 0], [0, 5, 1]]) >>> b = np.array([2, 4, -1]) >>> from scipy import linalg >>> x = linalg.solve(a, b) >>> x array([ 2., -2., 9.]) >>> np.dot(a, x) == b array([ True, True, True], dtype=bool)