5.2.1.1.3. scipy.sparse.csc_matrix¶
-
class
scipy.sparse.csc_matrix(arg1, shape=None, dtype=None, copy=False)[source]¶ Compressed Sparse Column matrix
This can be instantiated in several ways:
- csc_matrix(D)
- with a dense matrix or rank-2 ndarray D
- csc_matrix(S)
- with another sparse matrix S (equivalent to S.tocsc())
- csc_matrix((M, N), [dtype])
- to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.
- csc_matrix((data, (row_ind, col_ind)), [shape=(M, N)])
- where
data,row_indandcol_indsatisfy the relationshipa[row_ind[k], col_ind[k]] = data[k]. - csc_matrix((data, indices, indptr), [shape=(M, N)])
- is the standard CSC representation where the row indices for
column i are stored in
indices[indptr[i]:indptr[i+1]]and their corresponding values are stored indata[indptr[i]:indptr[i+1]]. If the shape parameter is not supplied, the matrix dimensions are inferred from the index arrays.
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
- Advantages of the CSC format
- efficient arithmetic operations CSC + CSC, CSC * CSC, etc.
- efficient column slicing
- fast matrix vector products (CSR, BSR may be faster)
- Disadvantages of the CSC format
- slow row slicing operations (consider CSR)
- changes to the sparsity structure are expensive (consider LIL or DOK)
Examples
>>> import numpy as np >>> from scipy.sparse import csc_matrix >>> csc_matrix((3, 4), dtype=np.int8).toarray() array([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=int8)
>>> row = np.array([0, 2, 2, 0, 1, 2]) >>> col = np.array([0, 0, 1, 2, 2, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csc_matrix((data, (row, col)), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
>>> indptr = np.array([0, 2, 3, 6]) >>> indices = np.array([0, 2, 2, 0, 1, 2]) >>> data = np.array([1, 2, 3, 4, 5, 6]) >>> csc_matrix((data, indices, indptr), shape=(3, 3)).toarray() array([[1, 0, 4], [0, 0, 5], [2, 3, 6]])
Attributes
nnzGet the count of explicitly-stored values (nonzeros) has_sorted_indicesDetermine whether the matrix has sorted indices dtype (dtype) Data type of the matrix shape (2-tuple) Shape of the matrix ndim (int) Number of dimensions (this is always 2) data Data array of the matrix indices CSC format index array indptr CSC format index pointer array -
__init__(arg1, shape=None, dtype=None, copy=False)¶
Methods
__init__(arg1[, shape, dtype, copy])arcsin()Element-wise arcsin. arcsinh()Element-wise arcsinh. arctan()Element-wise arctan. arctanh()Element-wise arctanh. asformat(format)Return this matrix in a given sparse format asfptype()Upcast matrix to a floating point format (if necessary) astype(t)ceil()Element-wise ceil. check_format([full_check])check whether the matrix format is valid conj()conjugate()copy()deg2rad()Element-wise deg2rad. diagonal()Returns the main diagonal of the matrix dot(other)Ordinary dot product eliminate_zeros()Remove zero entries from the matrix expm1()Element-wise expm1. floor()Element-wise floor. getH()get_shape()getcol(i)Returns a copy of column i of the matrix, as a (m x 1) CSC matrix (column vector). getformat()getmaxprint()getnnz([axis])Get the count of explicitly-stored values (nonzeros) getrow(i)Returns a copy of row i of the matrix, as a (1 x n) CSR matrix (row vector). log1p()Element-wise log1p. max([axis])Maximum of the elements of this matrix. maximum(other)mean([axis])Average the matrix over the given axis. min([axis])Minimum of the elements of this matrix. minimum(other)multiply(other)Point-wise multiplication by another matrix, vector, or scalar. nonzero()nonzero indices power(n[, dtype])This function performs element-wise power. prune()Remove empty space after all non-zero elements. rad2deg()Element-wise rad2deg. reshape(shape)rint()Element-wise rint. set_shape(shape)setdiag(values[, k])Set diagonal or off-diagonal elements of the array. sign()Element-wise sign. sin()Element-wise sin. sinh()Element-wise sinh. sort_indices()Sort the indices of this matrix in place sorted_indices()Return a copy of this matrix with sorted indices sqrt()Element-wise sqrt. sum([axis])Sum the matrix over the given axis. sum_duplicates()Eliminate duplicate matrix entries by adding them together tan()Element-wise tan. tanh()Element-wise tanh. toarray([order, out])See the docstring for spmatrix.toarray. tobsr([blocksize])tocoo([copy])Return a COOrdinate representation of this matrix tocsc([copy])tocsr()todense([order, out])Return a dense matrix representation of this matrix. todia()todok()tolil()transpose([copy])trunc()Element-wise trunc. Attributes
dtypehas_canonical_formatDetermine whether the matrix has sorted indices and no duplicates has_sorted_indicesDetermine whether the matrix has sorted indices ndimnnzGet the count of explicitly-stored values (nonzeros) shape