5.7.2.14.4. scipy.special.mathieu_odd_coef¶
-
scipy.special.
mathieu_odd_coef
(m, q)[source]¶ Fourier coefficients for even Mathieu and modified Mathieu functions.
The Fourier series of the odd solutions of the Mathieu differential equation are of the form
se2n+1(z,q)=∞∑k=0B(2k+1)(2n+1)sin(2k+1)zse2n+2(z,q)=∞∑k=0B(2k+2)(2n+2)sin(2k+2)zThis function returns the coefficients B(2k+2)(2n+2) for even input m=2n+2, and the coefficients B(2k+1)(2n+1) for odd input m=2n+1.
Parameters: m : int
Order of Mathieu functions. Must be non-negative.
q : float (>=0)
Parameter of Mathieu functions. Must be non-negative.
Returns: Bk : ndarray
Even or odd Fourier coefficients, corresponding to even or odd m.
References
[R341] Zhang, Shanjie and Jin, Jianming. “Computation of Special Functions”, John Wiley and Sons, 1996. http://jin.ece.illinois.edu/specfunc.html