5.2.1.1.6. scipy.sparse.dok_matrix¶
-
class
scipy.sparse.
dok_matrix
(arg1, shape=None, dtype=None, copy=False)[source]¶ Dictionary Of Keys based sparse matrix.
This is an efficient structure for constructing sparse matrices incrementally.
- This can be instantiated in several ways:
- dok_matrix(D)
- with a dense matrix, D
- dok_matrix(S)
- with a sparse matrix, S
- dok_matrix((M,N), [dtype])
- create the matrix with initial shape (M,N) dtype is optional, defaulting to dtype=’d’
Notes
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Allows for efficient O(1) access of individual elements. Duplicates are not allowed. Can be efficiently converted to a coo_matrix once constructed.
Examples
>>> import numpy as np >>> from scipy.sparse import dok_matrix >>> S = dok_matrix((5, 5), dtype=np.float32) >>> for i in range(5): ... for j in range(5): ... S[i, j] = i + j # Update element
Attributes
dtype (dtype) Data type of the matrix shape (2-tuple) Shape of the matrix ndim (int) Number of dimensions (this is always 2) nnz Number of nonzero elements Methods
__init__
(arg1[, shape, dtype, copy])asformat
(format)Return this matrix in a given sparse format asfptype
()Upcast matrix to a floating point format (if necessary) astype
(t)clear
(() -> None. Remove all items from D.)conj
()conjtransp
()Return the conjugate transpose conjugate
()copy
()diagonal
()Returns the main diagonal of the matrix dot
(other)Ordinary dot product fromkeys
(...)v defaults to None. get
(key[, default])This overrides the dict.get method, providing type checking but otherwise equivalent functionality. getH
()get_shape
()getcol
(j)Returns a copy of column j of the matrix as a (m x 1) DOK matrix. getformat
()getmaxprint
()getnnz
()getrow
(i)Returns a copy of row i of the matrix as a (1 x n) DOK matrix. has_key
((k) -> True if D has a key k, else False)items
(() -> list of D’s (key, value) pairs, ...)iteritems
(() -> an iterator over the (key, ...)iterkeys
(() -> an iterator over the keys of D)itervalues
(...)keys
(() -> list of D’s keys)maximum
(other)mean
([axis])Average the matrix over the given axis. minimum
(other)multiply
(other)Point-wise multiplication by another matrix nonzero
()nonzero indices pop
((k[,d]) -> v, ...)If key is not found, d is returned if given, otherwise KeyError is raised popitem
(() -> (k, v), ...)2-tuple; but raise KeyError if D is empty. power
(n[, dtype])reshape
(shape)resize
(shape)Resize the matrix in-place to dimensions given by ‘shape’. set_shape
(shape)setdefault
((k[,d]) -> D.get(k,d), ...)setdiag
(values[, k])Set diagonal or off-diagonal elements of the array. sum
([axis])Sum the matrix over the given axis. toarray
([order, out])Return a dense ndarray representation of this matrix. tobsr
([blocksize])tocoo
()Return a copy of this matrix in COOrdinate format tocsc
()Return a copy of this matrix in Compressed Sparse Column format tocsr
()Return a copy of this matrix in Compressed Sparse Row format todense
([order, out])Return a dense matrix representation of this matrix. todia
()todok
([copy])tolil
()transpose
()Return the transpose update
(([E, ...)If E present and has a .keys() method, does: for k in E: D[k] = E[k] values
(() -> list of D’s values)viewitems
(...)viewkeys
(...)viewvalues
(...)Attributes
ndim
nnz
shape