5.2.1.1.7. scipy.sparse.lil_matrix

class scipy.sparse.lil_matrix(arg1, shape=None, dtype=None, copy=False)[source]

Row-based linked list sparse matrix

This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take linear time in the worst case; to construct a matrix efficiently, make sure the items are pre-sorted by index, per row.

This can be instantiated in several ways:
lil_matrix(D)
with a dense matrix or rank-2 ndarray D
lil_matrix(S)
with another sparse matrix S (equivalent to S.tolil())
lil_matrix((M, N), [dtype])
to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype=’d’.

Notes

Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.

Advantages of the LIL format
  • supports flexible slicing
  • changes to the matrix sparsity structure are efficient
Disadvantages of the LIL format
  • arithmetic operations LIL + LIL are slow (consider CSR or CSC)
  • slow column slicing (consider CSC)
  • slow matrix vector products (consider CSR or CSC)
Intended Usage
  • LIL is a convenient format for constructing sparse matrices
  • once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
  • consider using the COO format when constructing large matrices
Data Structure
  • An array (self.rows) of rows, each of which is a sorted list of column indices of non-zero elements.
  • The corresponding nonzero values are stored in similar fashion in self.data.

Attributes

nnz Get the count of explicitly-stored values (nonzeros)
dtype (dtype) Data type of the matrix
shape (2-tuple) Shape of the matrix
ndim (int) Number of dimensions (this is always 2)
data LIL format data array of the matrix
rows LIL format row index array of the matrix
__init__(arg1, shape=None, dtype=None, copy=False)[source]

Methods

__init__(arg1[, shape, dtype, copy])
asformat(format) Return this matrix in a given sparse format
asfptype() Upcast matrix to a floating point format (if necessary)
astype(t)
conj()
conjugate()
copy()
diagonal() Returns the main diagonal of the matrix
dot(other) Ordinary dot product
getH()
get_shape()
getcol(j) Returns a copy of column j of the matrix, as an (m x 1) sparse matrix (column vector).
getformat()
getmaxprint()
getnnz([axis]) Get the count of explicitly-stored values (nonzeros)
getrow(i) Returns a copy of the ‘i’th row.
getrowview(i) Returns a view of the ‘i’th row (without copying).
maximum(other)
mean([axis]) Average the matrix over the given axis.
minimum(other)
multiply(other) Point-wise multiplication by another matrix
nonzero() nonzero indices
power(n[, dtype])
reshape(shape)
set_shape(shape)
setdiag(values[, k]) Set diagonal or off-diagonal elements of the array.
sum([axis]) Sum the matrix over the given axis.
toarray([order, out]) See the docstring for spmatrix.toarray.
tobsr([blocksize])
tocoo()
tocsc() Return Compressed Sparse Column format arrays for this matrix.
tocsr() Return Compressed Sparse Row format arrays for this matrix.
todense([order, out]) Return a dense matrix representation of this matrix.
todia()
todok()
tolil([copy])
transpose()

Attributes

ndim
nnz Get the count of explicitly-stored values (nonzeros)
shape