nltk.DefaultTagger

class nltk.DefaultTagger(tag)[source]

A tagger that assigns the same tag to every token.

>>> from nltk.tag import DefaultTagger
>>> default_tagger = DefaultTagger('NN')
>>> list(default_tagger.tag('This is a test'.split()))
[('This', 'NN'), ('is', 'NN'), ('a', 'NN'), ('test', 'NN')]

This tagger is recommended as a backoff tagger, in cases where a more powerful tagger is unable to assign a tag to the word (e.g. because the word was not seen during training).

Parameters:tag (str) – The tag to assign to each token

Methods

__init__(tag)
choose_tag(tokens, index, history)
decode_json_obj(obj)
encode_json_obj()
evaluate(gold) Score the accuracy of the tagger against the gold standard.
tag(tokens)
tag_one(tokens, index, history) Determine an appropriate tag for the specified token, and return that tag.
tag_sents(sentences) Apply self.tag() to each element of sentences.
unicode_repr()

Attributes

backoff The backoff tagger for this tagger.
json_tag