__init__([train_text, verbose, lang_vars, ...]) |
train_text can either be the sole training text for this sentence |
debug_decisions(text) |
Classifies candidate periods as sentence breaks, yielding a dict for each that may be used to understand why the decision was made. |
dump(tokens) |
|
sentences_from_text(text[, realign_boundaries]) |
Given a text, generates the sentences in that text by only testing candidate sentence breaks. |
sentences_from_text_legacy(text) |
Given a text, generates the sentences in that text. |
sentences_from_tokens(tokens) |
Given a sequence of tokens, generates lists of tokens, each list corresponding to a sentence. |
span_tokenize(text[, realign_boundaries]) |
Given a text, returns a list of the (start, end) spans of sentences in the text. |
span_tokenize_sents(strings) |
Apply self.span_tokenize() to each element of strings. |
text_contains_sentbreak(text) |
Returns True if the given text includes a sentence break. |
tokenize(text[, realign_boundaries]) |
Given a text, returns a list of the sentences in that text. |
tokenize_sents(strings) |
Apply self.tokenize() to each element of strings. |
train(train_text[, verbose]) |
Derives parameters from a given training text, or uses the parameters given. |