Source code for gensim.corpora.wikicorpus

#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2010 Radim Rehurek <radimrehurek@seznam.cz>
# Copyright (C) 2012 Lars Buitinck <larsmans@gmail.com>
# Licensed under the GNU LGPL v2.1 - http://www.gnu.org/licenses/lgpl.html


"""
Construct a corpus from a Wikipedia (or other MediaWiki-based) database dump.

If you have the `pattern` package installed, this module will use a fancy
lemmatization to get a lemma of each token (instead of plain alphabetic
tokenizer). The package is available at https://github.com/clips/pattern .

See scripts/process_wiki.py for a canned (example) script based on this
module.
"""


import bz2
import logging
import re
from xml.etree.cElementTree import iterparse  # LXML isn't faster, so let's go with the built-in solution
import multiprocessing

from gensim import utils

# cannot import whole gensim.corpora, because that imports wikicorpus...
from gensim.corpora.dictionary import Dictionary
from gensim.corpora.textcorpus import TextCorpus

logger = logging.getLogger('gensim.corpora.wikicorpus')

# ignore articles shorter than ARTICLE_MIN_WORDS characters (after full preprocessing)
ARTICLE_MIN_WORDS = 50


RE_P0 = re.compile('<!--.*?-->', re.DOTALL | re.UNICODE)  # comments
RE_P1 = re.compile('<ref([> ].*?)(</ref>|/>)', re.DOTALL | re.UNICODE)  # footnotes
RE_P2 = re.compile("(\n\[\[[a-z][a-z][\w-]*:[^:\]]+\]\])+$", re.UNICODE)  # links to languages
RE_P3 = re.compile("{{([^}{]*)}}", re.DOTALL | re.UNICODE)  # template
RE_P4 = re.compile("{{([^}]*)}}", re.DOTALL | re.UNICODE)  # template
RE_P5 = re.compile('\[(\w+):\/\/(.*?)(( (.*?))|())\]', re.UNICODE)  # remove URL, keep description
RE_P6 = re.compile("\[([^][]*)\|([^][]*)\]", re.DOTALL | re.UNICODE)  # simplify links, keep description
RE_P7 = re.compile('\n\[\[[iI]mage(.*?)(\|.*?)*\|(.*?)\]\]', re.UNICODE)  # keep description of images
RE_P8 = re.compile('\n\[\[[fF]ile(.*?)(\|.*?)*\|(.*?)\]\]', re.UNICODE)  # keep description of files
RE_P9 = re.compile('<nowiki([> ].*?)(</nowiki>|/>)', re.DOTALL | re.UNICODE)  # outside links
RE_P10 = re.compile('<math([> ].*?)(</math>|/>)', re.DOTALL | re.UNICODE)  # math content
RE_P11 = re.compile('<(.*?)>', re.DOTALL | re.UNICODE)  # all other tags
RE_P12 = re.compile('\n(({\|)|(\|-)|(\|}))(.*?)(?=\n)', re.UNICODE)  # table formatting
RE_P13 = re.compile('\n(\||\!)(.*?\|)*([^|]*?)', re.UNICODE)  # table cell formatting
RE_P14 = re.compile('\[\[Category:[^][]*\]\]', re.UNICODE)  # categories
# Remove File and Image template
RE_P15 = re.compile('\[\[([fF]ile:|[iI]mage)[^]]*(\]\])', re.UNICODE)

# MediaWiki namespaces (https://www.mediawiki.org/wiki/Manual:Namespace) that
# ought to be ignored
IGNORED_NAMESPACES = ['Wikipedia', 'Category', 'File', 'Portal', 'Template',
                      'MediaWiki', 'User', 'Help', 'Book', 'Draft',
                      'WikiProject', 'Special', 'Talk']


def filter_wiki(raw):
    """
    Filter out wiki mark-up from `raw`, leaving only text. `raw` is either unicode
    or utf-8 encoded string.
    """
    # parsing of the wiki markup is not perfect, but sufficient for our purposes
    # contributions to improving this code are welcome :)
    text = utils.to_unicode(raw, 'utf8', errors='ignore')
    text = utils.decode_htmlentities(text)  # '&amp;nbsp;' --> '\xa0'
    return remove_markup(text)


def remove_markup(text):
    text = re.sub(RE_P2, "", text)  # remove the last list (=languages)
    # the wiki markup is recursive (markup inside markup etc)
    # instead of writing a recursive grammar, here we deal with that by removing
    # markup in a loop, starting with inner-most expressions and working outwards,
    # for as long as something changes.
    text = remove_template(text)
    text = remove_file(text)
    iters = 0
    while True:
        old, iters = text, iters + 1
        text = re.sub(RE_P0, "", text)  # remove comments
        text = re.sub(RE_P1, '', text)  # remove footnotes
        text = re.sub(RE_P9, "", text)  # remove outside links
        text = re.sub(RE_P10, "", text)  # remove math content
        text = re.sub(RE_P11, "", text)  # remove all remaining tags
        text = re.sub(RE_P14, '', text)  # remove categories
        text = re.sub(RE_P5, '\\3', text)  # remove urls, keep description
        text = re.sub(RE_P6, '\\2', text)  # simplify links, keep description only
        # remove table markup
        text = text.replace('||', '\n|')  # each table cell on a separate line
        text = re.sub(RE_P12, '\n', text)  # remove formatting lines
        text = re.sub(RE_P13, '\n\\3', text)  # leave only cell content
        # remove empty mark-up
        text = text.replace('[]', '')
        if old == text or iters > 2:  # stop if nothing changed between two iterations or after a fixed number of iterations
            break

    # the following is needed to make the tokenizer see '[[socialist]]s' as a single word 'socialists'
    # TODO is this really desirable?
    text = text.replace('[', '').replace(']', '')  # promote all remaining markup to plain text
    return text


def remove_template(s):
    """Remove template wikimedia markup.

    Return a copy of `s` with all the wikimedia markup template removed. See
    http://meta.wikimedia.org/wiki/Help:Template for wikimedia templates
    details.

    Note: Since template can be nested, it is difficult remove them using
    regular expresssions.
    """

    # Find the start and end position of each template by finding the opening
    # '{{' and closing '}}'
    n_open, n_close = 0, 0
    starts, ends = [], []
    in_template = False
    prev_c = None
    for i, c in enumerate(iter(s)):
        if not in_template:
            if c == '{' and c == prev_c:
                starts.append(i - 1)
                in_template = True
                n_open = 1
        if in_template:
            if c == '{':
                n_open += 1
            elif c == '}':
                n_close += 1
            if n_open == n_close:
                ends.append(i)
                in_template = False
                n_open, n_close = 0, 0
        prev_c = c

    # Remove all the templates
    s = ''.join([s[end + 1:start] for start, end in
                 zip(starts + [None], [-1] + ends)])

    return s


def remove_file(s):
    """Remove the 'File:' and 'Image:' markup, keeping the file caption.

    Return a copy of `s` with all the 'File:' and 'Image:' markup replaced by
    their corresponding captions. See http://www.mediawiki.org/wiki/Help:Images
    for the markup details.
    """
    # The regex RE_P15 match a File: or Image: markup
    for match in re.finditer(RE_P15, s):
        m = match.group(0)
        caption = m[:-2].split('|')[-1]
        s = s.replace(m, caption, 1)
    return s


def tokenize(content):
    """
    Tokenize a piece of text from wikipedia. The input string `content` is assumed
    to be mark-up free (see `filter_wiki()`).

    Return list of tokens as utf8 bytestrings. Ignore words shorted than 2 or longer
    that 15 characters (not bytes!).
    """
    # TODO maybe ignore tokens with non-latin characters? (no chinese, arabic, russian etc.)
    return [token.encode('utf8') for token in utils.tokenize(content, lower=True, errors='ignore')
            if 2 <= len(token) <= 15 and not token.startswith('_')]


def get_namespace(tag):
    """Returns the namespace of tag."""
    m = re.match("^{(.*?)}", tag)
    namespace = m.group(1) if m else ""
    if not namespace.startswith("http://www.mediawiki.org/xml/export-"):
        raise ValueError("%s not recognized as MediaWiki dump namespace"
                         % namespace)
    return namespace
_get_namespace = get_namespace


def extract_pages(f, filter_namespaces=False):
    """
    Extract pages from a MediaWiki database dump = open file-like object `f`.

    Return an iterable over (str, str, str) which generates (title, content, pageid) triplets.

    """
    elems = (elem for _, elem in iterparse(f, events=("end",)))

    # We can't rely on the namespace for database dumps, since it's changed
    # it every time a small modification to the format is made. So, determine
    # those from the first element we find, which will be part of the metadata,
    # and construct element paths.
    elem = next(elems)
    namespace = get_namespace(elem.tag)
    ns_mapping = {"ns": namespace}
    page_tag = "{%(ns)s}page" % ns_mapping
    text_path = "./{%(ns)s}revision/{%(ns)s}text" % ns_mapping
    title_path = "./{%(ns)s}title" % ns_mapping
    ns_path = "./{%(ns)s}ns" % ns_mapping
    pageid_path = "./{%(ns)s}id" % ns_mapping

    for elem in elems:
        if elem.tag == page_tag:
            title = elem.find(title_path).text
            text = elem.find(text_path).text

            ns = elem.find(ns_path).text
            if filter_namespaces and ns not in filter_namespaces:
                text = None

            pageid = elem.find(pageid_path).text
            yield title, text or "", pageid     # empty page will yield None

            # Prune the element tree, as per
            # http://www.ibm.com/developerworks/xml/library/x-hiperfparse/
            # except that we don't need to prune backlinks from the parent
            # because we don't use LXML.
            # We do this only for <page>s, since we need to inspect the
            # ./revision/text element. The pages comprise the bulk of the
            # file, so in practice we prune away enough.
            elem.clear()
_extract_pages = extract_pages  # for backward compatibility


def process_article(args):
    """
    Parse a wikipedia article, returning its content as a list of tokens
    (utf8-encoded strings).
    """
    text, lemmatize, title, pageid = args
    text = filter_wiki(text)
    if lemmatize:
        result = utils.lemmatize(text)
    else:
        result = tokenize(text)
    return result, title, pageid


[docs]class WikiCorpus(TextCorpus): """ Treat a wikipedia articles dump (\*articles.xml.bz2) as a (read-only) corpus. The documents are extracted on-the-fly, so that the whole (massive) dump can stay compressed on disk. >>> wiki = WikiCorpus('enwiki-20100622-pages-articles.xml.bz2') # create word->word_id mapping, takes almost 8h >>> MmCorpus.serialize('wiki_en_vocab200k.mm', wiki) # another 8h, creates a file in MatrixMarket format plus file with id->word """
[docs] def __init__(self, fname, processes=None, lemmatize=utils.has_pattern(), dictionary=None, filter_namespaces=('0',)): """ Initialize the corpus. Unless a dictionary is provided, this scans the corpus once, to determine its vocabulary. If `pattern` package is installed, use fancier shallow parsing to get token lemmas. Otherwise, use simple regexp tokenization. You can override this automatic logic by forcing the `lemmatize` parameter explicitly. """ self.fname = fname self.filter_namespaces = filter_namespaces self.metadata = False if processes is None: processes = max(1, multiprocessing.cpu_count() - 1) self.processes = processes self.lemmatize = lemmatize if dictionary is None: self.dictionary = Dictionary(self.get_texts()) else: self.dictionary = dictionary
[docs] def get_texts(self): """ Iterate over the dump, returning text version of each article as a list of tokens. Only articles of sufficient length are returned (short articles & redirects etc are ignored). Note that this iterates over the **texts**; if you want vectors, just use the standard corpus interface instead of this function:: >>> for vec in wiki_corpus: >>> print(vec) """ articles, articles_all = 0, 0 positions, positions_all = 0, 0 texts = ((text, self.lemmatize, title, pageid) for title, text, pageid in extract_pages(bz2.BZ2File(self.fname), self.filter_namespaces)) pool = multiprocessing.Pool(self.processes) # process the corpus in smaller chunks of docs, because multiprocessing.Pool # is dumb and would load the entire input into RAM at once... for group in utils.chunkize(texts, chunksize=10 * self.processes, maxsize=1): for tokens, title, pageid in pool.imap(process_article, group): # chunksize=10): articles_all += 1 positions_all += len(tokens) # article redirects and short stubs are pruned here if len(tokens) < ARTICLE_MIN_WORDS or any(title.startswith(ignore + ':') for ignore in IGNORED_NAMESPACES): continue articles += 1 positions += len(tokens) if self.metadata: yield (tokens, (pageid, title)) else: yield tokens pool.terminate() logger.info( "finished iterating over Wikipedia corpus of %i documents with %i positions" " (total %i articles, %i positions before pruning articles shorter than %i words)", articles, positions, articles_all, positions_all, ARTICLE_MIN_WORDS) self.length = articles # cache corpus length
# endclass WikiCorpus