Source code for nltk.parse.earleychart

# -*- coding: utf-8 -*-
# Natural Language Toolkit: An Incremental Earley Chart Parser
#
# Copyright (C) 2001-2015 NLTK Project
# Author: Peter Ljunglöf <peter.ljunglof@heatherleaf.se>
#         Rob Speer <rspeer@mit.edu>
#         Edward Loper <edloper@gmail.com>
#         Steven Bird <stevenbird1@gmail.com>
#         Jean Mark Gawron <gawron@mail.sdsu.edu>
# URL: <http://nltk.org/>
# For license information, see LICENSE.TXT

"""
Data classes and parser implementations for *incremental* chart
parsers, which use dynamic programming to efficiently parse a text.
A "chart parser" derives parse trees for a text by iteratively adding
\"edges\" to a \"chart\".  Each "edge" represents a hypothesis about the tree
structure for a subsequence of the text.  The "chart" is a
\"blackboard\" for composing and combining these hypotheses.

A parser is "incremental", if it guarantees that for all i, j where i < j,
all edges ending at i are built before any edges ending at j.
This is appealing for, say, speech recognizer hypothesis filtering.

The main parser class is ``EarleyChartParser``, which is a top-down
algorithm, originally formulated by Jay Earley (1970).
"""
from __future__ import print_function, division

from nltk.compat import xrange
from nltk.parse.chart import (Chart, ChartParser, EdgeI, LeafEdge, LeafInitRule,
                              BottomUpPredictRule, BottomUpPredictCombineRule,
                              TopDownInitRule, SingleEdgeFundamentalRule,
                              EmptyPredictRule,
                              CachedTopDownPredictRule,
                              FilteredSingleEdgeFundamentalRule,
                              FilteredBottomUpPredictCombineRule)
from nltk.parse.featurechart import (FeatureChart, FeatureChartParser,
                                     FeatureTopDownInitRule,
                                     FeatureTopDownPredictRule,
                                     FeatureEmptyPredictRule,
                                     FeatureBottomUpPredictRule,
                                     FeatureBottomUpPredictCombineRule,
                                     FeatureSingleEdgeFundamentalRule)

#////////////////////////////////////////////////////////////
# Incremental Chart
#////////////////////////////////////////////////////////////

class IncrementalChart(Chart):
    def initialize(self):
        # A sequence of edge lists contained in this chart.
        self._edgelists = tuple([] for x in self._positions())

        # The set of child pointer lists associated with each edge.
        self._edge_to_cpls = {}

        # Indexes mapping attribute values to lists of edges
        # (used by select()).
        self._indexes = {}

    def edges(self):
        return list(self.iteredges())

    def iteredges(self):
        return (edge for edgelist in self._edgelists for edge in edgelist)

    def select(self, end, **restrictions):
        edgelist = self._edgelists[end]

        # If there are no restrictions, then return all edges.
        if restrictions=={}: return iter(edgelist)

        # Find the index corresponding to the given restrictions.
        restr_keys = sorted(restrictions.keys())
        restr_keys = tuple(restr_keys)

        # If it doesn't exist, then create it.
        if restr_keys not in self._indexes:
            self._add_index(restr_keys)

        vals = tuple(restrictions[key] for key in restr_keys)
        return iter(self._indexes[restr_keys][end].get(vals, []))

    def _add_index(self, restr_keys):
        # Make sure it's a valid index.
        for key in restr_keys:
            if not hasattr(EdgeI, key):
                raise ValueError('Bad restriction: %s' % key)

        # Create the index.
        index = self._indexes[restr_keys] = tuple({} for x in self._positions())

        # Add all existing edges to the index.
        for end, edgelist in enumerate(self._edgelists):
            this_index = index[end]
            for edge in edgelist:
                vals = tuple(getattr(edge, key)() for key in restr_keys)
                this_index.setdefault(vals, []).append(edge)

    def _register_with_indexes(self, edge):
        end = edge.end()
        for (restr_keys, index) in self._indexes.items():
            vals = tuple(getattr(edge, key)() for key in restr_keys)
            index[end].setdefault(vals, []).append(edge)

    def _append_edge(self, edge):
        self._edgelists[edge.end()].append(edge)

    def _positions(self):
        return xrange(self.num_leaves() + 1)


class FeatureIncrementalChart(IncrementalChart, FeatureChart):
    def select(self, end, **restrictions):
        edgelist = self._edgelists[end]

        # If there are no restrictions, then return all edges.
        if restrictions=={}: return iter(edgelist)

        # Find the index corresponding to the given restrictions.
        restr_keys = sorted(restrictions.keys())
        restr_keys = tuple(restr_keys)

        # If it doesn't exist, then create it.
        if restr_keys not in self._indexes:
            self._add_index(restr_keys)

        vals = tuple(self._get_type_if_possible(restrictions[key])
                     for key in restr_keys)
        return iter(self._indexes[restr_keys][end].get(vals, []))

    def _add_index(self, restr_keys):
        # Make sure it's a valid index.
        for key in restr_keys:
            if not hasattr(EdgeI, key):
                raise ValueError('Bad restriction: %s' % key)

        # Create the index.
        index = self._indexes[restr_keys] = tuple({} for x in self._positions())

        # Add all existing edges to the index.
        for end, edgelist in enumerate(self._edgelists):
            this_index = index[end]
            for edge in edgelist:
                vals = tuple(self._get_type_if_possible(getattr(edge, key)())
                             for key in restr_keys)
                this_index.setdefault(vals, []).append(edge)

    def _register_with_indexes(self, edge):
        end = edge.end()
        for (restr_keys, index) in self._indexes.items():
            vals = tuple(self._get_type_if_possible(getattr(edge, key)())
                         for key in restr_keys)
            index[end].setdefault(vals, []).append(edge)

#////////////////////////////////////////////////////////////
# Incremental CFG Rules
#////////////////////////////////////////////////////////////

class CompleteFundamentalRule(SingleEdgeFundamentalRule):
    def _apply_incomplete(self, chart, grammar, left_edge):
        end = left_edge.end()
        # When the chart is incremental, we only have to look for
        # empty complete edges here.
        for right_edge in chart.select(start=end, end=end,
                                       is_complete=True,
                                       lhs=left_edge.nextsym()):
            new_edge = left_edge.move_dot_forward(right_edge.end())
            if chart.insert_with_backpointer(new_edge, left_edge, right_edge):
                yield new_edge

class CompleterRule(CompleteFundamentalRule):
    _fundamental_rule = CompleteFundamentalRule()
    def apply(self, chart, grammar, edge):
        if not isinstance(edge, LeafEdge):
            for new_edge in self._fundamental_rule.apply(chart, grammar, edge):
                yield new_edge

class ScannerRule(CompleteFundamentalRule):
    _fundamental_rule = CompleteFundamentalRule()
    def apply(self, chart, grammar, edge):
        if isinstance(edge, LeafEdge):
            for new_edge in self._fundamental_rule.apply(chart, grammar, edge):
                yield new_edge

class PredictorRule(CachedTopDownPredictRule):
    pass

class FilteredCompleteFundamentalRule(FilteredSingleEdgeFundamentalRule):
    def apply(self, chart, grammar, edge):
        # Since the Filtered rule only works for grammars without empty productions,
        # we only have to bother with complete edges here.
        if edge.is_complete():
            for new_edge in self._apply_complete(chart, grammar, edge):
                yield new_edge

#////////////////////////////////////////////////////////////
# Incremental FCFG Rules
#////////////////////////////////////////////////////////////

class FeatureCompleteFundamentalRule(FeatureSingleEdgeFundamentalRule):
    def _apply_incomplete(self, chart, grammar, left_edge):
        fr = self._fundamental_rule
        end = left_edge.end()
        # When the chart is incremental, we only have to look for
        # empty complete edges here.
        for right_edge in chart.select(start=end, end=end,
                                       is_complete=True,
                                       lhs=left_edge.nextsym()):
            for new_edge in fr.apply(chart, grammar, left_edge, right_edge):
                yield new_edge

class FeatureCompleterRule(CompleterRule):
    _fundamental_rule = FeatureCompleteFundamentalRule()

class FeatureScannerRule(ScannerRule):
    _fundamental_rule = FeatureCompleteFundamentalRule()

class FeaturePredictorRule(FeatureTopDownPredictRule):
    pass

#////////////////////////////////////////////////////////////
# Incremental CFG Chart Parsers
#////////////////////////////////////////////////////////////

EARLEY_STRATEGY = [LeafInitRule(),
                   TopDownInitRule(),
                   CompleterRule(),
                   ScannerRule(),
                   PredictorRule()]
TD_INCREMENTAL_STRATEGY = [LeafInitRule(),
                           TopDownInitRule(),
                           CachedTopDownPredictRule(),
                           CompleteFundamentalRule()]
BU_INCREMENTAL_STRATEGY = [LeafInitRule(),
                           EmptyPredictRule(),
                           BottomUpPredictRule(),
                           CompleteFundamentalRule()]
BU_LC_INCREMENTAL_STRATEGY = [LeafInitRule(),
                              EmptyPredictRule(),
                              BottomUpPredictCombineRule(),
                              CompleteFundamentalRule()]

LC_INCREMENTAL_STRATEGY = [LeafInitRule(),
                           FilteredBottomUpPredictCombineRule(),
                           FilteredCompleteFundamentalRule()]

[docs]class IncrementalChartParser(ChartParser): """ An *incremental* chart parser implementing Jay Earley's parsing algorithm: | For each index end in [0, 1, ..., N]: | For each edge such that edge.end = end: | If edge is incomplete and edge.next is not a part of speech: | Apply PredictorRule to edge | If edge is incomplete and edge.next is a part of speech: | Apply ScannerRule to edge | If edge is complete: | Apply CompleterRule to edge | Return any complete parses in the chart """
[docs] def __init__(self, grammar, strategy=BU_LC_INCREMENTAL_STRATEGY, trace=0, trace_chart_width=50, chart_class=IncrementalChart): """ Create a new Earley chart parser, that uses ``grammar`` to parse texts. :type grammar: CFG :param grammar: The grammar used to parse texts. :type trace: int :param trace: The level of tracing that should be used when parsing a text. ``0`` will generate no tracing output; and higher numbers will produce more verbose tracing output. :type trace_chart_width: int :param trace_chart_width: The default total width reserved for the chart in trace output. The remainder of each line will be used to display edges. :param chart_class: The class that should be used to create the charts used by this parser. """ self._grammar = grammar self._trace = trace self._trace_chart_width = trace_chart_width self._chart_class = chart_class self._axioms = [] self._inference_rules = [] for rule in strategy: if rule.NUM_EDGES == 0: self._axioms.append(rule) elif rule.NUM_EDGES == 1: self._inference_rules.append(rule) else: raise ValueError("Incremental inference rules must have " "NUM_EDGES == 0 or 1")
[docs] def chart_parse(self, tokens, trace=None): if trace is None: trace = self._trace trace_new_edges = self._trace_new_edges tokens = list(tokens) self._grammar.check_coverage(tokens) chart = self._chart_class(tokens) grammar = self._grammar # Width, for printing trace edges. trace_edge_width = self._trace_chart_width // (chart.num_leaves() + 1) if trace: print(chart.pretty_format_leaves(trace_edge_width)) for axiom in self._axioms: new_edges = list(axiom.apply(chart, grammar)) trace_new_edges(chart, axiom, new_edges, trace, trace_edge_width) inference_rules = self._inference_rules for end in range(chart.num_leaves()+1): if trace > 1: print("\n* Processing queue:", end, "\n") agenda = list(chart.select(end=end)) while agenda: edge = agenda.pop() for rule in inference_rules: new_edges = list(rule.apply(chart, grammar, edge)) trace_new_edges(chart, rule, new_edges, trace, trace_edge_width) for new_edge in new_edges: if new_edge.end()==end: agenda.append(new_edge) return chart
[docs]class EarleyChartParser(IncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, EARLEY_STRATEGY, **parser_args)
pass
[docs]class IncrementalTopDownChartParser(IncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, TD_INCREMENTAL_STRATEGY, **parser_args)
[docs]class IncrementalBottomUpChartParser(IncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, BU_INCREMENTAL_STRATEGY, **parser_args)
[docs]class IncrementalBottomUpLeftCornerChartParser(IncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): IncrementalChartParser.__init__(self, grammar, BU_LC_INCREMENTAL_STRATEGY, **parser_args)
[docs]class IncrementalLeftCornerChartParser(IncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): if not grammar.is_nonempty(): raise ValueError("IncrementalLeftCornerParser only works for grammars " "without empty productions.") IncrementalChartParser.__init__(self, grammar, LC_INCREMENTAL_STRATEGY, **parser_args)
#//////////////////////////////////////////////////////////// # Incremental FCFG Chart Parsers #//////////////////////////////////////////////////////////// EARLEY_FEATURE_STRATEGY = [LeafInitRule(), FeatureTopDownInitRule(), FeatureCompleterRule(), FeatureScannerRule(), FeaturePredictorRule()] TD_INCREMENTAL_FEATURE_STRATEGY = [LeafInitRule(), FeatureTopDownInitRule(), FeatureTopDownPredictRule(), FeatureCompleteFundamentalRule()] BU_INCREMENTAL_FEATURE_STRATEGY = [LeafInitRule(), FeatureEmptyPredictRule(), FeatureBottomUpPredictRule(), FeatureCompleteFundamentalRule()] BU_LC_INCREMENTAL_FEATURE_STRATEGY = [LeafInitRule(), FeatureEmptyPredictRule(), FeatureBottomUpPredictCombineRule(), FeatureCompleteFundamentalRule()]
[docs]class FeatureIncrementalChartParser(IncrementalChartParser, FeatureChartParser):
[docs] def __init__(self, grammar, strategy=BU_LC_INCREMENTAL_FEATURE_STRATEGY, trace_chart_width=20, chart_class=FeatureIncrementalChart, **parser_args): IncrementalChartParser.__init__(self, grammar, strategy=strategy, trace_chart_width=trace_chart_width, chart_class=chart_class, **parser_args)
[docs]class FeatureEarleyChartParser(FeatureIncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, EARLEY_FEATURE_STRATEGY, **parser_args)
[docs]class FeatureIncrementalTopDownChartParser(FeatureIncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, TD_INCREMENTAL_FEATURE_STRATEGY, **parser_args)
[docs]class FeatureIncrementalBottomUpChartParser(FeatureIncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, BU_INCREMENTAL_FEATURE_STRATEGY, **parser_args)
[docs]class FeatureIncrementalBottomUpLeftCornerChartParser(FeatureIncrementalChartParser):
[docs] def __init__(self, grammar, **parser_args): FeatureIncrementalChartParser.__init__(self, grammar, BU_LC_INCREMENTAL_FEATURE_STRATEGY, **parser_args)
#//////////////////////////////////////////////////////////// # Demonstration #//////////////////////////////////////////////////////////// def demo(print_times=True, print_grammar=False, print_trees=True, trace=2, sent='I saw John with a dog with my cookie', numparses=5): """ A demonstration of the Earley parsers. """ import sys, time from nltk.parse.chart import demo_grammar # The grammar for ChartParser and SteppingChartParser: grammar = demo_grammar() if print_grammar: print("* Grammar") print(grammar) # Tokenize the sample sentence. print("* Sentence:") print(sent) tokens = sent.split() print(tokens) print() # Do the parsing. earley = EarleyChartParser(grammar, trace=trace) t = time.clock() chart = earley.chart_parse(tokens) parses = list(chart.parses(grammar.start())) t = time.clock()-t # Print results. if numparses: assert len(parses)==numparses, 'Not all parses found' if print_trees: for tree in parses: print(tree) else: print("Nr trees:", len(parses)) if print_times: print("Time:", t) if __name__ == '__main__': demo()