melt(frame[, id_vars, value_vars, var_name, ...]) |
“Unpivots” a DataFrame from wide format to long format, optionally leaving |
pivot(index, columns, values) |
Produce ‘pivot’ table based on 3 columns of this DataFrame. |
pivot_table(data[, values, index, columns, ...]) |
Create a spreadsheet-style pivot table as a DataFrame. |
crosstab(index, columns[, values, rownames, ...]) |
Compute a simple cross-tabulation of two (or more) factors. |
cut(x, bins[, right, labels, retbins, ...]) |
Return indices of half-open bins to which each value of x belongs. |
qcut(x, q[, labels, retbins, precision]) |
Quantile-based discretization function. |
merge(left, right[, how, on, left_on, ...]) |
Merge DataFrame objects by performing a database-style join operation by columns or indexes. |
merge_ordered(left, right[, on, left_on, ...]) |
Perform merge with optional filling/interpolation designed for ordered data like time series data. |
merge_asof(left, right[, on, left_on, ...]) |
Perform an asof merge. |
concat(objs[, axis, join, join_axes, ...]) |
Concatenate pandas objects along a particular axis with optional set logic along the other axes. |
get_dummies(data[, prefix, prefix_sep, ...]) |
Convert categorical variable into dummy/indicator variables |
factorize(values[, sort, order, ...]) |
Encode input values as an enumerated type or categorical variable |