pandas.Series.values

Series.values

Return Series as ndarray or ndarray-like depending on the dtype

Returns:arr : numpy.ndarray or ndarray-like

Examples

>>> pd.Series([1, 2, 3]).values
array([1, 2, 3])
>>> pd.Series(list('aabc')).values
array(['a', 'a', 'b', 'c'], dtype=object)
>>> pd.Series(list('aabc')).astype('category').values
[a, a, b, c]
Categories (3, object): [a, b, c]

Timezone aware datetime data is converted to UTC:

>>> pd.Series(pd.date_range('20130101', periods=3,
                            tz='US/Eastern')).values
array(['2013-01-01T00:00:00.000000000-0500',
       '2013-01-02T00:00:00.000000000-0500',
       '2013-01-03T00:00:00.000000000-0500'], dtype='datetime64[ns]')