pandas.DataFrame.apply
-
DataFrame.
apply
(func, axis=0, broadcast=False, raw=False, reduce=None, args=(), **kwds)[source] Applies function along input axis of DataFrame.
Objects passed to functions are Series objects having index either the DataFrame’s index (axis=0) or the columns (axis=1). Return type depends on whether passed function aggregates, or the reduce argument if the DataFrame is empty.
Parameters: func : function
Function to apply to each column/row
axis : {0 or ‘index’, 1 or ‘columns’}, default 0
- 0 or ‘index’: apply function to each column
- 1 or ‘columns’: apply function to each row
broadcast : boolean, default False
For aggregation functions, return object of same size with values propagated
raw : boolean, default False
If False, convert each row or column into a Series. If raw=True the passed function will receive ndarray objects instead. If you are just applying a NumPy reduction function this will achieve much better performance
reduce : boolean or None, default None
Try to apply reduction procedures. If the DataFrame is empty, apply will use reduce to determine whether the result should be a Series or a DataFrame. If reduce is None (the default), apply’s return value will be guessed by calling func an empty Series (note: while guessing, exceptions raised by func will be ignored). If reduce is True a Series will always be returned, and if False a DataFrame will always be returned.
args : tuple
Positional arguments to pass to function in addition to the array/series
Additional keyword arguments will be passed as keywords to the function
Returns: applied : Series or DataFrame
See also
DataFrame.applymap
- For elementwise operations
Notes
In the current implementation apply calls func twice on the first column/row to decide whether it can take a fast or slow code path. This can lead to unexpected behavior if func has side-effects, as they will take effect twice for the first column/row.
Examples
>>> df.apply(numpy.sqrt) # returns DataFrame >>> df.apply(numpy.sum, axis=0) # equiv to df.sum(0) >>> df.apply(numpy.sum, axis=1) # equiv to df.sum(1)