6.2 Database-style DataFrame joining/merging

pandas has full-featured, high performance in-memory join operations idiomatically very similar to relational databases like SQL. These methods perform significantly better (in some cases well over an order of magnitude better) than other open source implementations (like base::merge.data.frame in R). The reason for this is careful algorithmic design and internal layout of the data in DataFrame.

See the cookbook for some advanced strategies.

Users who are familiar with SQL but new to pandas might be interested in a comparison with SQL.

pandas provides a single function, merge, as the entry point for all standard database join operations between DataFrame objects:

pd.merge(left, right, how='inner', on=None, left_on=None, right_on=None,
         left_index=False, right_index=False, sort=True,
         suffixes=('_x', '_y'), copy=True, indicator=False)
  • left: A DataFrame object

  • right: Another DataFrame object

  • on: Columns (names) to join on. Must be found in both the left and right DataFrame objects. If not passed and left_index and right_index are False, the intersection of the columns in the DataFrames will be inferred to be the join keys

  • left_on: Columns from the left DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame

  • right_on: Columns from the right DataFrame to use as keys. Can either be column names or arrays with length equal to the length of the DataFrame

  • left_index: If True, use the index (row labels) from the left DataFrame as its join key(s). In the case of a DataFrame with a MultiIndex (hierarchical), the number of levels must match the number of join keys from the right DataFrame

  • right_index: Same usage as left_index for the right DataFrame

  • how: One of 'left', 'right', 'outer', 'inner'. Defaults to inner. See below for more detailed description of each method

  • sort: Sort the result DataFrame by the join keys in lexicographical order. Defaults to True, setting to False will improve performance substantially in many cases

  • suffixes: A tuple of string suffixes to apply to overlapping columns. Defaults to ('_x', '_y').

  • copy: Always copy data (default True) from the passed DataFrame objects, even when reindexing is not necessary. Cannot be avoided in many cases but may improve performance / memory usage. The cases where copying can be avoided are somewhat pathological but this option is provided nonetheless.

  • indicator: Add a column to the output DataFrame called _merge with information on the source of each row. _merge is Categorical-type and takes on a value of left_only for observations whose merge key only appears in 'left' DataFrame, right_only for observations whose merge key only appears in 'right' DataFrame, and both if the observation’s merge key is found in both.

    New in version 0.17.0.

The return type will be the same as left. If left is a DataFrame and right is a subclass of DataFrame, the return type will still be DataFrame.

merge is a function in the pandas namespace, and it is also available as a DataFrame instance method, with the calling DataFrame being implicitly considered the left object in the join.

The related DataFrame.join method, uses merge internally for the index-on-index (by default) and column(s)-on-index join. If you are joining on index only, you may wish to use DataFrame.join to save yourself some typing.

6.2.1 Brief primer on merge methods (relational algebra)

Experienced users of relational databases like SQL will be familiar with the terminology used to describe join operations between two SQL-table like structures (DataFrame objects). There are several cases to consider which are very important to understand:

  • one-to-one joins: for example when joining two DataFrame objects on their indexes (which must contain unique values)
  • many-to-one joins: for example when joining an index (unique) to one or more columns in a DataFrame
  • many-to-many joins: joining columns on columns.

Note

When joining columns on columns (potentially a many-to-many join), any indexes on the passed DataFrame objects will be discarded.

It is worth spending some time understanding the result of the many-to-many join case. In SQL / standard relational algebra, if a key combination appears more than once in both tables, the resulting table will have the Cartesian product of the associated data. Here is a very basic example with one unique key combination:

In [1]: left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
   ...:                      'A': ['A0', 'A1', 'A2', 'A3'],
   ...:                      'B': ['B0', 'B1', 'B2', 'B3']})
   ...: 

In [2]: right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
   ...:                       'C': ['C0', 'C1', 'C2', 'C3'],
   ...:                       'D': ['D0', 'D1', 'D2', 'D3']})
   ...: 

In [3]: result = pd.merge(left, right, on='key')
In [4]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_on_key.png

Here is a more complicated example with multiple join keys:

In [5]: left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
   ...:                      'key2': ['K0', 'K1', 'K0', 'K1'],
   ...:                      'A': ['A0', 'A1', 'A2', 'A3'],
   ...:                      'B': ['B0', 'B1', 'B2', 'B3']})
   ...: 

In [6]: right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
   ...:                       'key2': ['K0', 'K0', 'K0', 'K0'],
   ...:                       'C': ['C0', 'C1', 'C2', 'C3'],
   ...:                       'D': ['D0', 'D1', 'D2', 'D3']})
   ...: 

In [7]: result = pd.merge(left, right, on=['key1', 'key2'])

../_images/merging_merge_on_key_multiple.png

The how argument to merge specifies how to determine which keys are to be included in the resulting table. If a key combination does not appear in either the left or right tables, the values in the joined table will be NA. Here is a summary of the how options and their SQL equivalent names:

Merge method SQL Join Name Description
left LEFT OUTER JOIN Use keys from left frame only
right RIGHT OUTER JOIN Use keys from right frame only
outer FULL OUTER JOIN Use union of keys from both frames
inner INNER JOIN Use intersection of keys from both frames
In [8]: result = pd.merge(left, right, how='left', on=['key1', 'key2'])
In [9]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_on_key_left.png
In [10]: result = pd.merge(left, right, how='right', on=['key1', 'key2'])
In [11]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_on_key_right.png
In [12]: result = pd.merge(left, right, how='outer', on=['key1', 'key2'])
In [13]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_on_key_outer.png
In [14]: result = pd.merge(left, right, how='inner', on=['key1', 'key2'])
In [15]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_on_key_inner.png

6.2.2 The merge indicator

New in version 0.17.0.

merge now accepts the argument indicator. If True, a Categorical-type column called _merge will be added to the output object that takes on values:

Observation Origin _merge value
Merge key only in 'left' frame left_only
Merge key only in 'right' frame right_only
Merge key in both frames both
In [16]: df1 = pd.DataFrame({'col1': [0, 1], 'col_left':['a', 'b']})

In [17]: df2 = pd.DataFrame({'col1': [1, 2, 2],'col_right':[2, 2, 2]})

In [18]: pd.merge(df1, df2, on='col1', how='outer', indicator=True)
Out[18]: 
   col1 col_left  col_right      _merge
0     0        a        NaN   left_only
1     1        b        2.0        both
2     2      NaN        2.0  right_only
3     2      NaN        2.0  right_only

The indicator argument will also accept string arguments, in which case the indicator function will use the value of the passed string as the name for the indicator column.

In [19]: pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
Out[19]: 
   col1 col_left  col_right indicator_column
0     0        a        NaN        left_only
1     1        b        2.0             both
2     2      NaN        2.0       right_only
3     2      NaN        2.0       right_only

6.2.3 Joining on index

DataFrame.join is a convenient method for combining the columns of two potentially differently-indexed DataFrames into a single result DataFrame. Here is a very basic example:

In [20]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   ....:                      'B': ['B0', 'B1', 'B2']},
   ....:                      index=['K0', 'K1', 'K2'])
   ....: 

In [21]: right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D2', 'D3']},
   ....:                       index=['K0', 'K2', 'K3'])
   ....: 

In [22]: result = left.join(right)
In [23]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_join.png
In [24]: result = left.join(right, how='outer')
In [25]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_join_outer.png
In [26]: result = left.join(right, how='inner')
In [27]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_join_inner.png

The data alignment here is on the indexes (row labels). This same behavior can be achieved using merge plus additional arguments instructing it to use the indexes:

In [28]: result = pd.merge(left, right, left_index=True, right_index=True, how='outer')
In [29]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_index_outer.png
In [30]: result = pd.merge(left, right, left_index=True, right_index=True, how='inner');
In [31]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_index_inner.png

6.2.4 Joining key columns on an index

join takes an optional on argument which may be a column or multiple column names, which specifies that the passed DataFrame is to be aligned on that column in the DataFrame. These two function calls are completely equivalent:

left.join(right, on=key_or_keys)
pd.merge(left, right, left_on=key_or_keys, right_index=True,
      how='left', sort=False)

Obviously you can choose whichever form you find more convenient. For many-to-one joins (where one of the DataFrame’s is already indexed by the join key), using join may be more convenient. Here is a simple example:

In [32]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
   ....:                      'B': ['B0', 'B1', 'B2', 'B3'],
   ....:                      'key': ['K0', 'K1', 'K0', 'K1']})
   ....: 

In [33]: right = pd.DataFrame({'C': ['C0', 'C1'],
   ....:                       'D': ['D0', 'D1']},
   ....:                       index=['K0', 'K1'])
   ....: 

In [34]: result = left.join(right, on='key')
In [35]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_join_key_columns.png
In [36]: result = pd.merge(left, right, left_on='key', right_index=True,
   ....:                   how='left', sort=False);
   ....: 
In [37]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_key_columns.png

To join on multiple keys, the passed DataFrame must have a MultiIndex:

In [38]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
   ....:                      'B': ['B0', 'B1', 'B2', 'B3'],
   ....:                      'key1': ['K0', 'K0', 'K1', 'K2'],
   ....:                      'key2': ['K0', 'K1', 'K0', 'K1']})
   ....: 

In [39]: index = pd.MultiIndex.from_tuples([('K0', 'K0'), ('K1', 'K0'),
   ....:                                   ('K2', 'K0'), ('K2', 'K1')])
   ....: 

In [40]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
   ....:                    'D': ['D0', 'D1', 'D2', 'D3']},
   ....:                   index=index)
   ....: 

Now this can be joined by passing the two key column names:

In [41]: result = left.join(right, on=['key1', 'key2'])
In [42]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_join_multikeys.png

The default for DataFrame.join is to perform a left join (essentially a “VLOOKUP” operation, for Excel users), which uses only the keys found in the calling DataFrame. Other join types, for example inner join, can be just as easily performed:

In [43]: result = left.join(right, on=['key1', 'key2'], how='inner')
In [44]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);

In [45]: plt.close('all');
../_images/merging_join_multikeys_inner.png

As you can see, this drops any rows where there was no match.

6.2.5 Joining a single Index to a Multi-index

New in version 0.14.0.

You can join a singly-indexed DataFrame with a level of a multi-indexed DataFrame. The level will match on the name of the index of the singly-indexed frame against a level name of the multi-indexed frame.

In [46]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   ....:                      'B': ['B0', 'B1', 'B2']},
   ....:                      index=pd.Index(['K0', 'K1', 'K2'], name='key'))
   ....: 

In [47]: index = pd.MultiIndex.from_tuples([('K0', 'Y0'), ('K1', 'Y1'),
   ....:                                   ('K2', 'Y2'), ('K2', 'Y3')],
   ....:                                    names=['key', 'Y'])
   ....: 

In [48]: right = pd.DataFrame({'C': ['C0', 'C1', 'C2', 'C3'],
   ....:                       'D': ['D0', 'D1', 'D2', 'D3']},
   ....:                       index=index)
   ....: 

In [49]: result = left.join(right, how='inner')
In [50]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_join_multiindex_inner.png

This is equivalent but less verbose and more memory efficient / faster than this.

In [51]: result = pd.merge(left.reset_index(), right.reset_index(),
   ....:       on=['key'], how='inner').set_index(['key','Y'])
   ....: 
In [52]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_multiindex_alternative.png

6.2.6 Joining with two multi-indexes

This is not Implemented via join at-the-moment, however it can be done using the following.

In [53]: index = pd.MultiIndex.from_tuples([('K0', 'X0'), ('K0', 'X1'),
   ....:                                    ('K1', 'X2')],
   ....:                                     names=['key', 'X'])
   ....: 

In [54]: left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
   ....:                      'B': ['B0', 'B1', 'B2']},
   ....:                       index=index)
   ....: 

In [55]: result = pd.merge(left.reset_index(), right.reset_index(),
   ....:                   on=['key'], how='inner').set_index(['key','X','Y'])
   ....: 
In [56]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_two_multiindex.png

6.2.7 Overlapping value columns

The merge suffixes argument takes a tuple of list of strings to append to overlapping column names in the input DataFrames to disambiguate the result columns:

In [57]: left = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'v': [1, 2, 3]})

In [58]: right = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'v': [4, 5, 6]})

In [59]: result = pd.merge(left, right, on='k')
In [60]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_overlapped.png
In [61]: result = pd.merge(left, right, on='k', suffixes=['_l', '_r'])
In [62]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_overlapped_suffix.png

DataFrame.join has lsuffix and rsuffix arguments which behave similarly.

In [63]: left = left.set_index('k')

In [64]: right = right.set_index('k')

In [65]: result = left.join(right, lsuffix='_l', rsuffix='_r')
In [66]: p.plot([left, right], result,labels=['left', 'right'], vertical=False);
../_images/merging_merge_overlapped_multi_suffix.png

6.2.8 Joining multiple DataFrame or Panel objects

A list or tuple of DataFrames can also be passed to DataFrame.join to join them together on their indexes. The same is true for Panel.join.

In [67]: right2 = pd.DataFrame({'v': [7, 8, 9]}, index=['K1', 'K1', 'K2'])

In [68]: result = left.join([right, right2])
In [69]: p.plot([left, right, right2], result,labels=['left', 'right', 'right2'], vertical=False);
../_images/merging_join_multi_df.png

6.2.9 Merging together values within Series or DataFrame columns

Another fairly common situation is to have two like-indexed (or similarly indexed) Series or DataFrame objects and wanting to “patch” values in one object from values for matching indices in the other. Here is an example:

In [70]: df1 = pd.DataFrame([[np.nan, 3., 5.], [-4.6, np.nan, np.nan],
   ....:                    [np.nan, 7., np.nan]])
   ....: 

In [71]: df2 = pd.DataFrame([[-42.6, np.nan, -8.2], [-5., 1.6, 4]],
   ....:                    index=[1, 2])
   ....: 

For this, use the combine_first method:

In [72]: result = df1.combine_first(df2)
In [73]: p.plot([df1, df2], result,labels=['df1', 'df2'], vertical=False);
../_images/merging_combine_first.png

Note that this method only takes values from the right DataFrame if they are missing in the left DataFrame. A related method, update, alters non-NA values inplace:

In [74]: df1_copy = df1.copy()

In [75]: df1.update(df2)
In [76]: p.plot([df1_copy, df2], df1,labels=['df1', 'df2'], vertical=False);

In [77]: plt.close('all');
../_images/merging_update.png