Pandas Doc
1

Table of Contents

  • API Reference
    • Input/Output
      • Pickling
        • pandas.read_pickle
      • Flat File
        • pandas.read_table
        • pandas.read_csv
        • pandas.read_fwf
      • Clipboard
        • pandas.read_clipboard
      • Excel
        • pandas.read_excel
        • pandas.ExcelFile.parse
      • JSON
        • pandas.read_json
        • pandas.io.json.json_normalize
      • HTML
        • pandas.read_html
      • HDFStore: PyTables (HDF5)
        • pandas.read_hdf
        • pandas.HDFStore.put
        • pandas.HDFStore.append
        • pandas.HDFStore.get
        • pandas.HDFStore.select
      • SAS
        • pandas.read_sas
      • SQL
        • pandas.read_sql_table
        • pandas.read_sql_query
        • pandas.read_sql
      • Google BigQuery
        • pandas.io.gbq.read_gbq
        • pandas.io.gbq.to_gbq
      • STATA
        • pandas.read_stata
        • pandas.io.stata.StataReader.data
        • pandas.io.stata.StataReader.data_label
        • pandas.io.stata.StataReader.value_labels
        • pandas.io.stata.StataReader.variable_labels
        • pandas.io.stata.StataWriter.write_file
    • General functions
      • Data manipulations
        • pandas.melt
        • pandas.pivot
        • pandas.pivot_table
        • pandas.crosstab
        • pandas.cut
        • pandas.qcut
        • pandas.merge
        • pandas.merge_ordered
        • pandas.merge_asof
        • pandas.concat
        • pandas.get_dummies
        • pandas.factorize
      • Top-level missing data
        • pandas.isnull
        • pandas.notnull
      • Top-level conversions
        • pandas.to_numeric
      • Top-level dealing with datetimelike
        • pandas.to_datetime
        • pandas.to_timedelta
        • pandas.date_range
        • pandas.bdate_range
        • pandas.period_range
        • pandas.timedelta_range
        • pandas.infer_freq
      • Top-level evaluation
        • pandas.eval
      • Testing
        • pandas.test
    • Series
      • Constructor
        • pandas.Series
      • Attributes
        • pandas.Series.values
        • pandas.Series.dtype
        • pandas.Series.ftype
        • pandas.Series.shape
        • pandas.Series.nbytes
        • pandas.Series.ndim
        • pandas.Series.size
        • pandas.Series.strides
        • pandas.Series.itemsize
        • pandas.Series.base
        • pandas.Series.T
        • pandas.Series.memory_usage
      • Conversion
        • pandas.Series.astype
        • pandas.Series.copy
        • pandas.Series.isnull
        • pandas.Series.notnull
      • Indexing, iteration
        • pandas.Series.get
        • pandas.Series.at
        • pandas.Series.iat
        • pandas.Series.ix
        • pandas.Series.loc
        • pandas.Series.iloc
        • pandas.Series.__iter__
        • pandas.Series.iteritems
      • Binary operator functions
        • pandas.Series.add
        • pandas.Series.sub
        • pandas.Series.mul
        • pandas.Series.div
        • pandas.Series.truediv
        • pandas.Series.floordiv
        • pandas.Series.mod
        • pandas.Series.pow
        • pandas.Series.radd
        • pandas.Series.rsub
        • pandas.Series.rmul
        • pandas.Series.rdiv
        • pandas.Series.rtruediv
        • pandas.Series.rfloordiv
        • pandas.Series.rmod
        • pandas.Series.rpow
        • pandas.Series.combine
        • pandas.Series.combine_first
        • pandas.Series.round
        • pandas.Series.lt
        • pandas.Series.gt
        • pandas.Series.le
        • pandas.Series.ge
        • pandas.Series.ne
        • pandas.Series.eq
      • Function application, GroupBy & Window
        • pandas.Series.apply
        • pandas.Series.map
        • pandas.Series.groupby
        • pandas.Series.rolling
        • pandas.Series.expanding
        • pandas.Series.ewm
      • Computations / Descriptive Stats
        • pandas.Series.abs
        • pandas.Series.all
        • pandas.Series.any
        • pandas.Series.autocorr
        • pandas.Series.between
        • pandas.Series.clip
        • pandas.Series.clip_lower
        • pandas.Series.clip_upper
        • pandas.Series.corr
        • pandas.Series.count
        • pandas.Series.cov
        • pandas.Series.cummax
        • pandas.Series.cummin
        • pandas.Series.cumprod
        • pandas.Series.cumsum
        • pandas.Series.describe
        • pandas.Series.diff
        • pandas.Series.factorize
        • pandas.Series.kurt
        • pandas.Series.mad
        • pandas.Series.max
        • pandas.Series.mean
        • pandas.Series.median
        • pandas.Series.min
        • pandas.Series.mode
        • pandas.Series.nlargest
        • pandas.Series.nsmallest
        • pandas.Series.pct_change
        • pandas.Series.prod
        • pandas.Series.quantile
        • pandas.Series.rank
        • pandas.Series.sem
        • pandas.Series.skew
        • pandas.Series.std
        • pandas.Series.sum
        • pandas.Series.var
        • pandas.Series.unique
        • pandas.Series.nunique
        • pandas.Series.is_unique
        • pandas.Series.is_monotonic
        • pandas.Series.is_monotonic_increasing
        • pandas.Series.is_monotonic_decreasing
        • pandas.Series.value_counts
      • Reindexing / Selection / Label manipulation
        • pandas.Series.align
        • pandas.Series.drop
        • pandas.Series.drop_duplicates
        • pandas.Series.duplicated
        • pandas.Series.equals
        • pandas.Series.first
        • pandas.Series.head
        • pandas.Series.idxmax
        • pandas.Series.idxmin
        • pandas.Series.isin
        • pandas.Series.last
        • pandas.Series.reindex
        • pandas.Series.reindex_like
        • pandas.Series.rename
        • pandas.Series.rename_axis
        • pandas.Series.reset_index
        • pandas.Series.sample
        • pandas.Series.select
        • pandas.Series.take
        • pandas.Series.tail
        • pandas.Series.truncate
        • pandas.Series.where
        • pandas.Series.mask
      • Missing data handling
        • pandas.Series.dropna
        • pandas.Series.fillna
        • pandas.Series.interpolate
      • Reshaping, sorting
        • pandas.Series.argsort
        • pandas.Series.reorder_levels
        • pandas.Series.sort_values
        • pandas.Series.sort_index
        • pandas.Series.sortlevel
        • pandas.Series.swaplevel
        • pandas.Series.unstack
        • pandas.Series.searchsorted
      • Combining / joining / merging
        • pandas.Series.append
        • pandas.Series.replace
        • pandas.Series.update
      • Time series-related
        • pandas.Series.asfreq
        • pandas.Series.asof
        • pandas.Series.shift
        • pandas.Series.first_valid_index
        • pandas.Series.last_valid_index
        • pandas.Series.resample
        • pandas.Series.tz_convert
        • pandas.Series.tz_localize
      • Datetimelike Properties
        • pandas.Series.dt.date
        • pandas.Series.dt.time
        • pandas.Series.dt.year
        • pandas.Series.dt.month
        • pandas.Series.dt.day
        • pandas.Series.dt.hour
        • pandas.Series.dt.minute
        • pandas.Series.dt.second
        • pandas.Series.dt.microsecond
        • pandas.Series.dt.nanosecond
        • pandas.Series.dt.week
        • pandas.Series.dt.weekofyear
        • pandas.Series.dt.dayofweek
        • pandas.Series.dt.weekday
        • pandas.Series.dt.weekday_name
        • pandas.Series.dt.dayofyear
        • pandas.Series.dt.quarter
        • pandas.Series.dt.is_month_start
        • pandas.Series.dt.is_month_end
        • pandas.Series.dt.is_quarter_start
        • pandas.Series.dt.is_quarter_end
        • pandas.Series.dt.is_year_start
        • pandas.Series.dt.is_year_end
        • pandas.Series.dt.is_leap_year
        • pandas.Series.dt.daysinmonth
        • pandas.Series.dt.days_in_month
        • pandas.Series.dt.tz
        • pandas.Series.dt.freq
        • pandas.Series.dt.to_period
        • pandas.Series.dt.to_pydatetime
        • pandas.Series.dt.tz_localize
        • pandas.Series.dt.tz_convert
        • pandas.Series.dt.normalize
        • pandas.Series.dt.strftime
        • pandas.Series.dt.round
        • pandas.Series.dt.floor
        • pandas.Series.dt.ceil
        • pandas.Series.dt.days
        • pandas.Series.dt.seconds
        • pandas.Series.dt.microseconds
        • pandas.Series.dt.nanoseconds
        • pandas.Series.dt.components
        • pandas.Series.dt.to_pytimedelta
        • pandas.Series.dt.total_seconds
      • String handling
        • pandas.Series.str.capitalize
        • pandas.Series.str.cat
        • pandas.Series.str.center
        • pandas.Series.str.contains
        • pandas.Series.str.count
        • pandas.Series.str.decode
        • pandas.Series.str.encode
        • pandas.Series.str.endswith
        • pandas.Series.str.extract
        • pandas.Series.str.extractall
        • pandas.Series.str.find
        • pandas.Series.str.findall
        • pandas.Series.str.get
        • pandas.Series.str.index
        • pandas.Series.str.join
        • pandas.Series.str.len
        • pandas.Series.str.ljust
        • pandas.Series.str.lower
        • pandas.Series.str.lstrip
        • pandas.Series.str.match
        • pandas.Series.str.normalize
        • pandas.Series.str.pad
        • pandas.Series.str.partition
        • pandas.Series.str.repeat
        • pandas.Series.str.replace
        • pandas.Series.str.rfind
        • pandas.Series.str.rindex
        • pandas.Series.str.rjust
        • pandas.Series.str.rpartition
        • pandas.Series.str.rstrip
        • pandas.Series.str.slice
        • pandas.Series.str.slice_replace
        • pandas.Series.str.split
        • pandas.Series.str.rsplit
        • pandas.Series.str.startswith
        • pandas.Series.str.strip
        • pandas.Series.str.swapcase
        • pandas.Series.str.title
        • pandas.Series.str.translate
        • pandas.Series.str.upper
        • pandas.Series.str.wrap
        • pandas.Series.str.zfill
        • pandas.Series.str.isalnum
        • pandas.Series.str.isalpha
        • pandas.Series.str.isdigit
        • pandas.Series.str.isspace
        • pandas.Series.str.islower
        • pandas.Series.str.isupper
        • pandas.Series.str.istitle
        • pandas.Series.str.isnumeric
        • pandas.Series.str.isdecimal
        • pandas.Series.str.get_dummies
      • Categorical
        • pandas.Series.cat.categories
        • pandas.Series.cat.ordered
        • pandas.Series.cat.codes
        • pandas.Series.cat.rename_categories
        • pandas.Series.cat.reorder_categories
        • pandas.Series.cat.add_categories
        • pandas.Series.cat.remove_categories
        • pandas.Series.cat.remove_unused_categories
        • pandas.Series.cat.set_categories
        • pandas.Series.cat.as_ordered
        • pandas.Series.cat.as_unordered
        • pandas.Categorical
        • pandas.Categorical.from_codes
        • pandas.Categorical.__array__
      • Plotting
        • pandas.Series.plot
        • pandas.Series.plot.area
        • pandas.Series.plot.bar
        • pandas.Series.plot.barh
        • pandas.Series.plot.box
        • pandas.Series.plot.density
        • pandas.Series.plot.hist
        • pandas.Series.plot.kde
        • pandas.Series.plot.line
        • pandas.Series.plot.pie
        • pandas.Series.hist
      • Serialization / IO / Conversion
        • pandas.Series.from_csv
        • pandas.Series.to_pickle
        • pandas.Series.to_csv
        • pandas.Series.to_dict
        • pandas.Series.to_frame
        • pandas.Series.to_xarray
        • pandas.Series.to_hdf
        • pandas.Series.to_sql
        • pandas.Series.to_msgpack
        • pandas.Series.to_json
        • pandas.Series.to_sparse
        • pandas.Series.to_dense
        • pandas.Series.to_string
        • pandas.Series.to_clipboard
      • Sparse methods
        • pandas.SparseSeries.to_coo
        • pandas.SparseSeries.from_coo
    • DataFrame
      • Constructor
        • pandas.DataFrame
      • Attributes and underlying data
        • pandas.DataFrame.as_matrix
        • pandas.DataFrame.dtypes
        • pandas.DataFrame.ftypes
        • pandas.DataFrame.get_dtype_counts
        • pandas.DataFrame.get_ftype_counts
        • pandas.DataFrame.select_dtypes
        • pandas.DataFrame.values
        • pandas.DataFrame.axes
        • pandas.DataFrame.ndim
        • pandas.DataFrame.size
        • pandas.DataFrame.shape
        • pandas.DataFrame.memory_usage
      • Conversion
        • pandas.DataFrame.astype
        • pandas.DataFrame.convert_objects
        • pandas.DataFrame.copy
        • pandas.DataFrame.isnull
        • pandas.DataFrame.notnull
      • Indexing, iteration
        • pandas.DataFrame.head
        • pandas.DataFrame.at
        • pandas.DataFrame.iat
        • pandas.DataFrame.ix
        • pandas.DataFrame.loc
        • pandas.DataFrame.iloc
        • pandas.DataFrame.insert
        • pandas.DataFrame.__iter__
        • pandas.DataFrame.iteritems
        • pandas.DataFrame.iterrows
        • pandas.DataFrame.itertuples
        • pandas.DataFrame.lookup
        • pandas.DataFrame.pop
        • pandas.DataFrame.tail
        • pandas.DataFrame.xs
        • pandas.DataFrame.isin
        • pandas.DataFrame.where
        • pandas.DataFrame.mask
        • pandas.DataFrame.query
      • Binary operator functions
        • pandas.DataFrame.add
        • pandas.DataFrame.sub
        • pandas.DataFrame.mul
        • pandas.DataFrame.div
        • pandas.DataFrame.truediv
        • pandas.DataFrame.floordiv
        • pandas.DataFrame.mod
        • pandas.DataFrame.pow
        • pandas.DataFrame.radd
        • pandas.DataFrame.rsub
        • pandas.DataFrame.rmul
        • pandas.DataFrame.rdiv
        • pandas.DataFrame.rtruediv
        • pandas.DataFrame.rfloordiv
        • pandas.DataFrame.rmod
        • pandas.DataFrame.rpow
        • pandas.DataFrame.lt
        • pandas.DataFrame.gt
        • pandas.DataFrame.le
        • pandas.DataFrame.ge
        • pandas.DataFrame.ne
        • pandas.DataFrame.eq
        • pandas.DataFrame.combine
        • pandas.DataFrame.combine_first
      • Function application, GroupBy & Window
        • pandas.DataFrame.apply
        • pandas.DataFrame.applymap
        • pandas.DataFrame.groupby
        • pandas.DataFrame.rolling
        • pandas.DataFrame.expanding
        • pandas.DataFrame.ewm
      • Computations / Descriptive Stats
        • pandas.DataFrame.abs
        • pandas.DataFrame.all
        • pandas.DataFrame.any
        • pandas.DataFrame.clip
        • pandas.DataFrame.clip_lower
        • pandas.DataFrame.clip_upper
        • pandas.DataFrame.corr
        • pandas.DataFrame.corrwith
        • pandas.DataFrame.count
        • pandas.DataFrame.cov
        • pandas.DataFrame.cummax
        • pandas.DataFrame.cummin
        • pandas.DataFrame.cumprod
        • pandas.DataFrame.cumsum
        • pandas.DataFrame.describe
        • pandas.DataFrame.diff
        • pandas.DataFrame.eval
        • pandas.DataFrame.kurt
        • pandas.DataFrame.mad
        • pandas.DataFrame.max
        • pandas.DataFrame.mean
        • pandas.DataFrame.median
        • pandas.DataFrame.min
        • pandas.DataFrame.mode
        • pandas.DataFrame.pct_change
        • pandas.DataFrame.prod
        • pandas.DataFrame.quantile
        • pandas.DataFrame.rank
        • pandas.DataFrame.round
        • pandas.DataFrame.sem
        • pandas.DataFrame.skew
        • pandas.DataFrame.sum
        • pandas.DataFrame.std
        • pandas.DataFrame.var
      • Reindexing / Selection / Label manipulation
        • pandas.DataFrame.add_prefix
        • pandas.DataFrame.add_suffix
        • pandas.DataFrame.align
        • pandas.DataFrame.drop
        • pandas.DataFrame.drop_duplicates
        • pandas.DataFrame.duplicated
        • pandas.DataFrame.equals
        • pandas.DataFrame.filter
        • pandas.DataFrame.first
        • pandas.DataFrame.head
        • pandas.DataFrame.idxmax
        • pandas.DataFrame.idxmin
        • pandas.DataFrame.last
        • pandas.DataFrame.reindex
        • pandas.DataFrame.reindex_axis
        • pandas.DataFrame.reindex_like
        • pandas.DataFrame.rename
        • pandas.DataFrame.rename_axis
        • pandas.DataFrame.reset_index
        • pandas.DataFrame.sample
        • pandas.DataFrame.select
        • pandas.DataFrame.set_index
        • pandas.DataFrame.tail
        • pandas.DataFrame.take
        • pandas.DataFrame.truncate
      • Missing data handling
        • pandas.DataFrame.dropna
        • pandas.DataFrame.fillna
        • pandas.DataFrame.replace
      • Reshaping, sorting, transposing
        • pandas.DataFrame.pivot
        • pandas.DataFrame.reorder_levels
        • pandas.DataFrame.sort_values
        • pandas.DataFrame.sort_index
        • pandas.DataFrame.sortlevel
        • pandas.DataFrame.nlargest
        • pandas.DataFrame.nsmallest
        • pandas.DataFrame.swaplevel
        • pandas.DataFrame.stack
        • pandas.DataFrame.unstack
        • pandas.DataFrame.T
        • pandas.DataFrame.to_panel
        • pandas.DataFrame.to_xarray
        • pandas.DataFrame.transpose
      • Combining / joining / merging
        • pandas.DataFrame.append
        • pandas.DataFrame.assign
        • pandas.DataFrame.join
        • pandas.DataFrame.merge
        • pandas.DataFrame.update
      • Time series-related
        • pandas.DataFrame.asfreq
        • pandas.DataFrame.asof
        • pandas.DataFrame.shift
        • pandas.DataFrame.first_valid_index
        • pandas.DataFrame.last_valid_index
        • pandas.DataFrame.resample
        • pandas.DataFrame.to_period
        • pandas.DataFrame.to_timestamp
        • pandas.DataFrame.tz_convert
        • pandas.DataFrame.tz_localize
      • Plotting
        • pandas.DataFrame.plot
        • pandas.DataFrame.plot.area
        • pandas.DataFrame.plot.bar
        • pandas.DataFrame.plot.barh
        • pandas.DataFrame.plot.box
        • pandas.DataFrame.plot.density
        • pandas.DataFrame.plot.hexbin
        • pandas.DataFrame.plot.hist
        • pandas.DataFrame.plot.kde
        • pandas.DataFrame.plot.line
        • pandas.DataFrame.plot.pie
        • pandas.DataFrame.plot.scatter
        • pandas.DataFrame.boxplot
        • pandas.DataFrame.hist
      • Serialization / IO / Conversion
        • pandas.DataFrame.from_csv
        • pandas.DataFrame.from_dict
        • pandas.DataFrame.from_items
        • pandas.DataFrame.from_records
        • pandas.DataFrame.info
        • pandas.DataFrame.to_pickle
        • pandas.DataFrame.to_csv
        • pandas.DataFrame.to_hdf
        • pandas.DataFrame.to_sql
        • pandas.DataFrame.to_dict
        • pandas.DataFrame.to_excel
        • pandas.DataFrame.to_json
        • pandas.DataFrame.to_html
        • pandas.DataFrame.to_latex
        • pandas.DataFrame.to_stata
        • pandas.DataFrame.to_msgpack
        • pandas.DataFrame.to_gbq
        • pandas.DataFrame.to_records
        • pandas.DataFrame.to_sparse
        • pandas.DataFrame.to_dense
        • pandas.DataFrame.to_string
        • pandas.DataFrame.to_clipboard
    • Panel
      • Constructor
        • pandas.Panel
      • Attributes and underlying data
        • pandas.Panel.values
        • pandas.Panel.axes
        • pandas.Panel.ndim
        • pandas.Panel.size
        • pandas.Panel.shape
        • pandas.Panel.dtypes
        • pandas.Panel.ftypes
        • pandas.Panel.get_dtype_counts
        • pandas.Panel.get_ftype_counts
      • Conversion
        • pandas.Panel.astype
        • pandas.Panel.copy
        • pandas.Panel.isnull
        • pandas.Panel.notnull
      • Getting and setting
        • pandas.Panel.get_value
        • pandas.Panel.set_value
      • Indexing, iteration, slicing
        • pandas.Panel.at
        • pandas.Panel.iat
        • pandas.Panel.ix
        • pandas.Panel.loc
        • pandas.Panel.iloc
        • pandas.Panel.__iter__
        • pandas.Panel.iteritems
        • pandas.Panel.pop
        • pandas.Panel.xs
        • pandas.Panel.major_xs
        • pandas.Panel.minor_xs
      • Binary operator functions
        • pandas.Panel.add
        • pandas.Panel.sub
        • pandas.Panel.mul
        • pandas.Panel.div
        • pandas.Panel.truediv
        • pandas.Panel.floordiv
        • pandas.Panel.mod
        • pandas.Panel.pow
        • pandas.Panel.radd
        • pandas.Panel.rsub
        • pandas.Panel.rmul
        • pandas.Panel.rdiv
        • pandas.Panel.rtruediv
        • pandas.Panel.rfloordiv
        • pandas.Panel.rmod
        • pandas.Panel.rpow
        • pandas.Panel.lt
        • pandas.Panel.gt
        • pandas.Panel.le
        • pandas.Panel.ge
        • pandas.Panel.ne
        • pandas.Panel.eq
      • Function application, GroupBy
        • pandas.Panel.apply
        • pandas.Panel.groupby
      • Computations / Descriptive Stats
        • pandas.Panel.abs
        • pandas.Panel.clip
        • pandas.Panel.clip_lower
        • pandas.Panel.clip_upper
        • pandas.Panel.count
        • pandas.Panel.cummax
        • pandas.Panel.cummin
        • pandas.Panel.cumprod
        • pandas.Panel.cumsum
        • pandas.Panel.max
        • pandas.Panel.mean
        • pandas.Panel.median
        • pandas.Panel.min
        • pandas.Panel.pct_change
        • pandas.Panel.prod
        • pandas.Panel.sem
        • pandas.Panel.skew
        • pandas.Panel.sum
        • pandas.Panel.std
        • pandas.Panel.var
      • Reindexing / Selection / Label manipulation
        • pandas.Panel.add_prefix
        • pandas.Panel.add_suffix
        • pandas.Panel.drop
        • pandas.Panel.equals
        • pandas.Panel.filter
        • pandas.Panel.first
        • pandas.Panel.last
        • pandas.Panel.reindex
        • pandas.Panel.reindex_axis
        • pandas.Panel.reindex_like
        • pandas.Panel.rename
        • pandas.Panel.sample
        • pandas.Panel.select
        • pandas.Panel.take
        • pandas.Panel.truncate
      • Missing data handling
        • pandas.Panel.dropna
        • pandas.Panel.fillna
      • Reshaping, sorting, transposing
        • pandas.Panel.sort_index
        • pandas.Panel.swaplevel
        • pandas.Panel.transpose
        • pandas.Panel.swapaxes
        • pandas.Panel.conform
      • Combining / joining / merging
        • pandas.Panel.join
        • pandas.Panel.update
      • Time series-related
        • pandas.Panel.asfreq
        • pandas.Panel.shift
        • pandas.Panel.resample
        • pandas.Panel.tz_convert
        • pandas.Panel.tz_localize
      • Serialization / IO / Conversion
        • pandas.Panel.from_dict
        • pandas.Panel.to_pickle
        • pandas.Panel.to_excel
        • pandas.Panel.to_hdf
        • pandas.Panel.to_sparse
        • pandas.Panel.to_frame
        • pandas.Panel.to_xarray
        • pandas.Panel.to_clipboard
    • Panel4D
      • Constructor
        • pandas.Panel4D
      • Serialization / IO / Conversion
        • pandas.Panel4D.to_xarray
      • Attributes and underlying data
        • pandas.Panel4D.values
        • pandas.Panel4D.axes
        • pandas.Panel4D.ndim
        • pandas.Panel4D.size
        • pandas.Panel4D.shape
        • pandas.Panel4D.dtypes
        • pandas.Panel4D.ftypes
        • pandas.Panel4D.get_dtype_counts
        • pandas.Panel4D.get_ftype_counts
      • Conversion
        • pandas.Panel4D.astype
        • pandas.Panel4D.copy
        • pandas.Panel4D.isnull
        • pandas.Panel4D.notnull
    • Index
      • pandas.Index
      • Attributes
        • pandas.Index.values
        • pandas.Index.is_monotonic
        • pandas.Index.is_monotonic_increasing
        • pandas.Index.is_monotonic_decreasing
        • pandas.Index.is_unique
        • pandas.Index.has_duplicates
        • pandas.Index.dtype
        • pandas.Index.inferred_type
        • pandas.Index.is_all_dates
        • pandas.Index.shape
        • pandas.Index.nbytes
        • pandas.Index.ndim
        • pandas.Index.size
        • pandas.Index.strides
        • pandas.Index.itemsize
        • pandas.Index.base
        • pandas.Index.T
        • pandas.Index.memory_usage
      • Modifying and Computations
        • pandas.Index.all
        • pandas.Index.any
        • pandas.Index.argmin
        • pandas.Index.argmax
        • pandas.Index.copy
        • pandas.Index.delete
        • pandas.Index.drop
        • pandas.Index.drop_duplicates
        • pandas.Index.duplicated
        • pandas.Index.equals
        • pandas.Index.factorize
        • pandas.Index.identical
        • pandas.Index.insert
        • pandas.Index.min
        • pandas.Index.max
        • pandas.Index.reindex
        • pandas.Index.repeat
        • pandas.Index.where
        • pandas.Index.take
        • pandas.Index.putmask
        • pandas.Index.set_names
        • pandas.Index.unique
        • pandas.Index.nunique
        • pandas.Index.value_counts
        • pandas.Index.fillna
        • pandas.Index.dropna
      • Conversion
        • pandas.Index.astype
        • pandas.Index.tolist
        • pandas.Index.to_datetime
        • pandas.Index.to_series
      • Sorting
        • pandas.Index.argsort
        • pandas.Index.sort_values
      • Time-specific operations
        • pandas.Index.shift
      • Combining / joining / set operations
        • pandas.Index.append
        • pandas.Index.join
        • pandas.Index.intersection
        • pandas.Index.union
        • pandas.Index.difference
        • pandas.Index.symmetric_difference
      • Selecting
        • pandas.Index.get_indexer
        • pandas.Index.get_indexer_non_unique
        • pandas.Index.get_level_values
        • pandas.Index.get_loc
        • pandas.Index.get_value
        • pandas.Index.isin
        • pandas.Index.slice_indexer
        • pandas.Index.slice_locs
    • CategoricalIndex
      • pandas.CategoricalIndex
      • Categorical Components
        • pandas.CategoricalIndex.codes
        • pandas.CategoricalIndex.categories
        • pandas.CategoricalIndex.ordered
        • pandas.CategoricalIndex.rename_categories
        • pandas.CategoricalIndex.reorder_categories
        • pandas.CategoricalIndex.add_categories
        • pandas.CategoricalIndex.remove_categories
        • pandas.CategoricalIndex.remove_unused_categories
        • pandas.CategoricalIndex.set_categories
        • pandas.CategoricalIndex.as_ordered
        • pandas.CategoricalIndex.as_unordered
    • MultiIndex
      • pandas.MultiIndex
      • MultiIndex Components
        • pandas.MultiIndex.from_arrays
        • pandas.MultiIndex.from_tuples
        • pandas.MultiIndex.from_product
        • pandas.MultiIndex.set_levels
        • pandas.MultiIndex.set_labels
        • pandas.MultiIndex.to_hierarchical
        • pandas.MultiIndex.is_lexsorted
        • pandas.MultiIndex.droplevel
        • pandas.MultiIndex.swaplevel
        • pandas.MultiIndex.reorder_levels
    • DatetimeIndex
      • pandas.DatetimeIndex
      • Time/Date Components
        • pandas.DatetimeIndex.year
        • pandas.DatetimeIndex.month
        • pandas.DatetimeIndex.day
        • pandas.DatetimeIndex.hour
        • pandas.DatetimeIndex.minute
        • pandas.DatetimeIndex.second
        • pandas.DatetimeIndex.microsecond
        • pandas.DatetimeIndex.nanosecond
        • pandas.DatetimeIndex.date
        • pandas.DatetimeIndex.time
        • pandas.DatetimeIndex.dayofyear
        • pandas.DatetimeIndex.weekofyear
        • pandas.DatetimeIndex.week
        • pandas.DatetimeIndex.dayofweek
        • pandas.DatetimeIndex.weekday
        • pandas.DatetimeIndex.weekday_name
        • pandas.DatetimeIndex.quarter
        • pandas.DatetimeIndex.tz
        • pandas.DatetimeIndex.freq
        • pandas.DatetimeIndex.freqstr
        • pandas.DatetimeIndex.is_month_start
        • pandas.DatetimeIndex.is_month_end
        • pandas.DatetimeIndex.is_quarter_start
        • pandas.DatetimeIndex.is_quarter_end
        • pandas.DatetimeIndex.is_year_start
        • pandas.DatetimeIndex.is_year_end
        • pandas.DatetimeIndex.is_leap_year
        • pandas.DatetimeIndex.inferred_freq
      • Selecting
        • pandas.DatetimeIndex.indexer_at_time
        • pandas.DatetimeIndex.indexer_between_time
      • Time-specific operations
        • pandas.DatetimeIndex.normalize
        • pandas.DatetimeIndex.strftime
        • pandas.DatetimeIndex.snap
        • pandas.DatetimeIndex.tz_convert
        • pandas.DatetimeIndex.tz_localize
        • pandas.DatetimeIndex.round
        • pandas.DatetimeIndex.floor
        • pandas.DatetimeIndex.ceil
      • Conversion
        • pandas.DatetimeIndex.to_datetime
        • pandas.DatetimeIndex.to_period
        • pandas.DatetimeIndex.to_perioddelta
        • pandas.DatetimeIndex.to_pydatetime
        • pandas.DatetimeIndex.to_series
    • TimedeltaIndex
      • pandas.TimedeltaIndex
      • Components
        • pandas.TimedeltaIndex.days
        • pandas.TimedeltaIndex.seconds
        • pandas.TimedeltaIndex.microseconds
        • pandas.TimedeltaIndex.nanoseconds
        • pandas.TimedeltaIndex.components
        • pandas.TimedeltaIndex.inferred_freq
      • Conversion
        • pandas.TimedeltaIndex.to_pytimedelta
        • pandas.TimedeltaIndex.to_series
        • pandas.TimedeltaIndex.round
        • pandas.TimedeltaIndex.floor
        • pandas.TimedeltaIndex.ceil
    • Window
      • Standard moving window functions
        • pandas.core.window.Rolling.count
        • pandas.core.window.Rolling.sum
        • pandas.core.window.Rolling.mean
        • pandas.core.window.Rolling.median
        • pandas.core.window.Rolling.var
        • pandas.core.window.Rolling.std
        • pandas.core.window.Rolling.min
        • pandas.core.window.Rolling.max
        • pandas.core.window.Rolling.corr
        • pandas.core.window.Rolling.cov
        • pandas.core.window.Rolling.skew
        • pandas.core.window.Rolling.kurt
        • pandas.core.window.Rolling.apply
        • pandas.core.window.Rolling.quantile
        • pandas.core.window.Window.mean
        • pandas.core.window.Window.sum
      • Standard expanding window functions
        • pandas.core.window.Expanding.count
        • pandas.core.window.Expanding.sum
        • pandas.core.window.Expanding.mean
        • pandas.core.window.Expanding.median
        • pandas.core.window.Expanding.var
        • pandas.core.window.Expanding.std
        • pandas.core.window.Expanding.min
        • pandas.core.window.Expanding.max
        • pandas.core.window.Expanding.corr
        • pandas.core.window.Expanding.cov
        • pandas.core.window.Expanding.skew
        • pandas.core.window.Expanding.kurt
        • pandas.core.window.Expanding.apply
        • pandas.core.window.Expanding.quantile
      • Exponentially-weighted moving window functions
        • pandas.core.window.EWM.mean
        • pandas.core.window.EWM.std
        • pandas.core.window.EWM.var
        • pandas.core.window.EWM.corr
        • pandas.core.window.EWM.cov
    • GroupBy
      • Indexing, iteration
        • pandas.core.groupby.GroupBy.__iter__
        • pandas.core.groupby.GroupBy.groups
        • pandas.core.groupby.GroupBy.indices
        • pandas.core.groupby.GroupBy.get_group
        • pandas.Grouper
      • Function application
        • pandas.core.groupby.GroupBy.apply
        • pandas.core.groupby.GroupBy.aggregate
        • pandas.core.groupby.GroupBy.transform
      • Computations / Descriptive Stats
        • pandas.core.groupby.GroupBy.count
        • pandas.core.groupby.GroupBy.cumcount
        • pandas.core.groupby.GroupBy.first
        • pandas.core.groupby.GroupBy.head
        • pandas.core.groupby.GroupBy.last
        • pandas.core.groupby.GroupBy.max
        • pandas.core.groupby.GroupBy.mean
        • pandas.core.groupby.GroupBy.median
        • pandas.core.groupby.GroupBy.min
        • pandas.core.groupby.GroupBy.nth
        • pandas.core.groupby.GroupBy.ohlc
        • pandas.core.groupby.GroupBy.prod
        • pandas.core.groupby.GroupBy.size
        • pandas.core.groupby.GroupBy.sem
        • pandas.core.groupby.GroupBy.std
        • pandas.core.groupby.GroupBy.sum
        • pandas.core.groupby.GroupBy.var
        • pandas.core.groupby.GroupBy.tail
        • pandas.core.groupby.DataFrameGroupBy.agg
        • pandas.core.groupby.DataFrameGroupBy.all
        • pandas.core.groupby.DataFrameGroupBy.any
        • pandas.core.groupby.DataFrameGroupBy.bfill
        • pandas.core.groupby.DataFrameGroupBy.corr
        • pandas.core.groupby.DataFrameGroupBy.count
        • pandas.core.groupby.DataFrameGroupBy.cov
        • pandas.core.groupby.DataFrameGroupBy.cummax
        • pandas.core.groupby.DataFrameGroupBy.cummin
        • pandas.core.groupby.DataFrameGroupBy.cumprod
        • pandas.core.groupby.DataFrameGroupBy.cumsum
        • pandas.core.groupby.DataFrameGroupBy.describe
        • pandas.core.groupby.DataFrameGroupBy.diff
        • pandas.core.groupby.DataFrameGroupBy.ffill
        • pandas.core.groupby.DataFrameGroupBy.fillna
        • pandas.core.groupby.DataFrameGroupBy.hist
        • pandas.core.groupby.DataFrameGroupBy.idxmax
        • pandas.core.groupby.DataFrameGroupBy.idxmin
        • pandas.core.groupby.DataFrameGroupBy.mad
        • pandas.core.groupby.DataFrameGroupBy.pct_change
        • pandas.core.groupby.DataFrameGroupBy.plot
        • pandas.core.groupby.DataFrameGroupBy.quantile
        • pandas.core.groupby.DataFrameGroupBy.rank
        • pandas.core.groupby.DataFrameGroupBy.resample
        • pandas.core.groupby.DataFrameGroupBy.shift
        • pandas.core.groupby.DataFrameGroupBy.size
        • pandas.core.groupby.DataFrameGroupBy.skew
        • pandas.core.groupby.DataFrameGroupBy.take
        • pandas.core.groupby.DataFrameGroupBy.tshift
        • pandas.core.groupby.SeriesGroupBy.nlargest
        • pandas.core.groupby.SeriesGroupBy.nsmallest
        • pandas.core.groupby.SeriesGroupBy.nunique
        • pandas.core.groupby.SeriesGroupBy.unique
        • pandas.core.groupby.SeriesGroupBy.value_counts
        • pandas.core.groupby.DataFrameGroupBy.corrwith
        • pandas.core.groupby.DataFrameGroupBy.boxplot
    • Resampling
      • Indexing, iteration
        • pandas.tseries.resample.Resampler.__iter__
        • pandas.tseries.resample.Resampler.groups
        • pandas.tseries.resample.Resampler.indices
        • pandas.tseries.resample.Resampler.get_group
      • Function application
        • pandas.tseries.resample.Resampler.apply
        • pandas.tseries.resample.Resampler.aggregate
        • pandas.tseries.resample.Resampler.transform
      • Upsampling
        • pandas.tseries.resample.Resampler.ffill
        • pandas.tseries.resample.Resampler.backfill
        • pandas.tseries.resample.Resampler.bfill
        • pandas.tseries.resample.Resampler.pad
        • pandas.tseries.resample.Resampler.fillna
        • pandas.tseries.resample.Resampler.asfreq
        • pandas.tseries.resample.Resampler.interpolate
      • Computations / Descriptive Stats
        • pandas.tseries.resample.Resampler.count
        • pandas.tseries.resample.Resampler.nunique
        • pandas.tseries.resample.Resampler.first
        • pandas.tseries.resample.Resampler.last
        • pandas.tseries.resample.Resampler.max
        • pandas.tseries.resample.Resampler.mean
        • pandas.tseries.resample.Resampler.median
        • pandas.tseries.resample.Resampler.min
        • pandas.tseries.resample.Resampler.ohlc
        • pandas.tseries.resample.Resampler.prod
        • pandas.tseries.resample.Resampler.size
        • pandas.tseries.resample.Resampler.sem
        • pandas.tseries.resample.Resampler.std
        • pandas.tseries.resample.Resampler.sum
        • pandas.tseries.resample.Resampler.var
    • Style
      • Constructor
        • pandas.formats.style.Styler
      • Style Application
        • pandas.formats.style.Styler.apply
        • pandas.formats.style.Styler.applymap
        • pandas.formats.style.Styler.format
        • pandas.formats.style.Styler.set_precision
        • pandas.formats.style.Styler.set_table_styles
        • pandas.formats.style.Styler.set_caption
        • pandas.formats.style.Styler.set_properties
        • pandas.formats.style.Styler.set_uuid
        • pandas.formats.style.Styler.clear
      • Builtin Styles
        • pandas.formats.style.Styler.highlight_max
        • pandas.formats.style.Styler.highlight_min
        • pandas.formats.style.Styler.highlight_null
        • pandas.formats.style.Styler.background_gradient
        • pandas.formats.style.Styler.bar
      • Style Export and Import
        • pandas.formats.style.Styler.render
        • pandas.formats.style.Styler.export
        • pandas.formats.style.Styler.use
    • General utility functions
      • Working with options
        • pandas.describe_option
        • pandas.reset_option
        • pandas.get_option
        • pandas.set_option
        • pandas.option_context
  • 10 Minutes to pandas
    • 1 Object Creation
    • 2 Viewing Data
    • 3 Selection
      • 3.1 Getting
      • 3.2 Selection by Label
      • 3.3 Selection by Position
      • 3.4 Boolean Indexing
      • 3.5 Setting
    • 4 Missing Data
    • 5 Operations
      • 5.1 Stats
      • 5.2 Apply
      • 5.3 Histogramming
      • 5.4 String Methods
    • 6 Merge
      • 6.1 Concat
      • 6.2 Join
      • 6.3 Append
    • 7 Grouping
    • 8 Reshaping
      • 8.1 Stack
      • 8.2 Pivot Tables
    • 9 Time Series
    • 10 Categoricals
    • 11 Plotting
    • 12 Getting Data In/Out
      • 12.1 CSV
      • 12.2 HDF5
      • 12.3 Excel
    • 13 Gotchas
  • Intro to Data Structures
    • 1 Series
      • 1.1 Series is ndarray-like
      • 1.2 Series is dict-like
      • 1.3 Vectorized operations and label alignment with Series
      • 1.4 Name attribute
    • 2 DataFrame
      • 2.1 From dict of Series or dicts
      • 2.2 From dict of ndarrays / lists
      • 2.3 From structured or record array
      • 2.4 From a list of dicts
      • 2.5 From a dict of tuples
      • 2.6 From a Series
      • 2.7 Alternate Constructors
      • 2.8 Column selection, addition, deletion
      • 2.9 Assigning New Columns in Method Chains
      • 2.10 Indexing / Selection
      • 2.11 Data alignment and arithmetic
      • 2.12 Transposing
      • 2.13 DataFrame interoperability with NumPy functions
      • 2.14 Console display
      • 2.15 DataFrame column attribute access and IPython completion
    • 3 Panel
      • 3.1 From 3D ndarray with optional axis labels
      • 3.2 From dict of DataFrame objects
      • 3.3 From DataFrame using to_panel method
      • 3.4 Item selection / addition / deletion
      • 3.5 Transposing
      • 3.6 Indexing / Selection
      • 3.7 Squeezing
      • 3.8 Conversion to DataFrame
    • 4 Panel4D (Experimental)
      • 4.1 From 4D ndarray with optional axis labels
      • 4.2 From dict of Panel objects
      • 4.3 Slicing
      • 4.4 Transposing
    • 5 PanelND (Experimental)
  • Essential Basic Functionality
    • 1 Head and Tail
    • 2 Attributes and the raw ndarray(s)
    • 3 Accelerated operations
    • 4 Flexible binary operations
      • 4.1 Matching / broadcasting behavior
      • 4.2 Missing data / operations with fill values
      • 4.3 Flexible Comparisons
      • 4.4 Boolean Reductions
      • 4.5 Comparing if objects are equivalent
      • 4.6 Comparing array-like objects
      • 4.7 Combining overlapping data sets
      • 4.8 General DataFrame Combine
    • 5 Descriptive statistics
      • 5.1 Summarizing data: describe
      • 5.2 Index of Min/Max Values
      • 5.3 Value counts (histogramming) / Mode
      • 5.4 Discretization and quantiling
    • 6 Function application
      • 6.1 Tablewise Function Application
      • 6.2 Row or Column-wise Function Application
      • 6.3 Applying elementwise Python functions
      • 6.4 Applying with a Panel
    • 7 Reindexing and altering labels
      • 7.1 Reindexing to align with another object
      • 7.2 Aligning objects with each other with align
      • 7.3 Filling while reindexing
      • 7.4 Limits on filling while reindexing
      • 7.5 Dropping labels from an axis
      • 7.6 Renaming / mapping labels
    • 8 Iteration
      • 8.1 iteritems
      • 8.2 iterrows
      • 8.3 itertuples
    • 9 .dt accessor
    • 10 Vectorized string methods
    • 11 Sorting
      • 11.1 By Index
      • 11.2 By Values
      • 11.3 searchsorted
      • 11.4 smallest / largest values
      • 11.5 Sorting by a multi-index column
    • 12 Copying
    • 13 dtypes
      • 13.1 defaults
      • 13.2 upcasting
      • 13.3 astype
      • 13.4 object conversion
      • 13.5 gotchas
    • 14 Selecting columns based on dtype
  • Part1 (freqeuntly used)
    • 1 Options and Settings
      • 1.1 Overview
      • 1.2 Getting and Setting Options
      • 1.3 Setting Startup Options in python/ipython Environment
      • 1.4 Frequently Used Options
      • 1.5 Available Options
      • 1.6 Number Formatting
      • 1.7 Unicode Formatting
    • 2 Indexing and Selecting Data
      • 2.1 Different Choices for Indexing
      • 2.2 Basics
      • 2.3 Attribute Access
      • 2.4 Slicing ranges
      • 2.5 Selection By Label
      • 2.6 Selection By Position
      • 2.7 Selection By Callable
      • 2.8 Selecting Random Samples
      • 2.9 Setting With Enlargement
      • 2.10 Fast scalar value getting and setting
      • 2.11 Boolean indexing
      • 2.12 Indexing with isin
      • 2.13 The where() Method and Masking
      • 2.14 The query() Method (Experimental)
        • 2.14.1 MultiIndex query() Syntax
        • 2.14.2 query() Use Cases
        • 2.14.3 query() Python versus pandas Syntax Comparison
        • 2.14.4 The in and not in operators
        • 2.14.5 Special use of the == operator with list objects
        • 2.14.6 Boolean Operators
        • 2.14.7 Performance of query()
      • 2.15 Duplicate Data
      • 2.16 Dictionary-like get() method
      • 2.17 The select() Method
      • 2.18 The lookup() Method
      • 2.19 Index objects
        • 2.19.1 Setting metadata
        • 2.19.2 Set operations on Index objects
        • 2.19.3 Missing values
      • 2.20 Set / Reset Index
        • 2.20.1 Set an index
        • 2.20.2 Reset the index
        • 2.20.3 Adding an ad hoc index
      • 2.21 Returning a view versus a copy
        • 2.21.1 Why does assignment fail when using chained indexing?
        • 2.21.2 Evaluation order matters
    • 3 MultiIndex / Advanced Indexing
      • 3.1 Hierarchical indexing (MultiIndex)
        • 3.1.1 Creating a MultiIndex (hierarchical index) object
        • 3.1.2 Reconstructing the level labels
        • 3.1.3 Basic indexing on axis with MultiIndex
        • 3.1.4 Data alignment and using reindex
      • 3.2 Advanced indexing with hierarchical index
        • 3.2.1 Using slicers
        • 3.2.2 Cross-section
        • 3.2.3 Advanced reindexing and alignment
        • 3.2.4 Swapping levels with swaplevel()
        • 3.2.5 Reordering levels with reorder_levels()
      • 3.3 Sorting a MultiIndex
      • 3.4 Take Methods
      • 3.5 Index Types
        • 3.5.1 CategoricalIndex
        • 3.5.2 Int64Index and RangeIndex
        • 3.5.3 Float64Index
    • 4 Working with missing data
      • 4.1 Missing data basics
        • 4.1.1 When / why does data become missing?
        • 4.1.2 Values considered “missing”
      • 4.2 Datetimes
      • 4.3 Inserting missing data
      • 4.4 Calculations with missing data
        • 4.4.1 NA values in GroupBy
      • 4.5 Cleaning / filling missing data
        • 4.5.1 Filling missing values: fillna
        • 4.5.2 Filling with a PandasObject
        • 4.5.3 Dropping axis labels with missing data: dropna
        • 4.5.4 Interpolation
        • 4.5.5 Replacing Generic Values
        • 4.5.6 String/Regular Expression Replacement
        • 4.5.7 Numeric Replacement
      • 4.6 Missing data casting rules and indexing
    • 5 Group By: split-apply-combine
      • 5.1 Introduction
      • 5.2 Splitting an object into groups
        • 5.2.1 GroupBy sorting
        • 5.2.2 GroupBy object attributes
        • 5.2.3 GroupBy with MultiIndex
        • 5.2.4 DataFrame column selection in GroupBy
      • 5.3 Iterating through groups
      • 5.4 Selecting a group
      • 5.5 Aggregation
        • 5.5.1 Applying multiple functions at once
        • 5.5.2 Applying different functions to DataFrame columns
        • 5.5.3 Cython-optimized aggregation functions
      • 5.6 Transformation
      • 5.7 Filtration
      • 5.8 Dispatching to instance methods
      • 5.9 Flexible apply
      • 5.10 Other useful features
        • 5.10.1 Automatic exclusion of “nuisance” columns
        • 5.10.2 NA and NaT group handling
        • 5.10.3 Grouping with ordered factors
        • 5.10.4 Grouping with a Grouper specification
        • 5.10.5 Taking the first rows of each group
        • 5.10.6 Taking the nth row of each group
        • 5.10.7 Enumerate group items
        • 5.10.8 Plotting
      • 5.11 Examples
        • 5.11.1 Regrouping by factor
        • 5.11.2 Groupby by Indexer to ‘resample’ data
        • 5.11.3 Returning a Series to propagate names
    • 6 Merge, join, and concatenate
      • 6.1 Concatenating objects
        • 6.1.1 Set logic on the other axes
        • 6.1.2 Concatenating using append
        • 6.1.3 Ignoring indexes on the concatenation axis
        • 6.1.4 Concatenating with mixed ndims
        • 6.1.5 More concatenating with group keys
        • 6.1.6 Appending rows to a DataFrame
      • 6.2 Database-style DataFrame joining/merging
        • 6.2.1 Brief primer on merge methods (relational algebra)
        • 6.2.2 The merge indicator
        • 6.2.3 Joining on index
        • 6.2.4 Joining key columns on an index
        • 6.2.5 Joining a single Index to a Multi-index
        • 6.2.6 Joining with two multi-indexes
        • 6.2.7 Overlapping value columns
        • 6.2.8 Joining multiple DataFrame or Panel objects
        • 6.2.9 Merging together values within Series or DataFrame columns
      • 6.3 Timeseries friendly merging
        • 6.3.1 Merging Ordered Data
        • 6.3.2 Merging AsOf
    • 7 Reshaping and Pivot Tables
      • 7.1 Reshaping by pivoting DataFrame objects
      • 7.2 Reshaping by stacking and unstacking
        • 7.2.1 Multiple Levels
        • 7.2.2 Missing Data
        • 7.2.3 With a MultiIndex
      • 7.3 Reshaping by Melt
      • 7.4 Combining with stats and GroupBy
      • 7.5 Pivot tables
        • 7.5.1 Adding margins
      • 7.6 Cross tabulations
        • 7.6.1 Normalization
        • 7.6.2 Adding Margins
      • 7.7 Tiling
      • 7.8 Computing indicator / dummy variables
      • 7.9 Factorizing values
    • 8 Visualization
      • 8.1 Basic Plotting: plot
      • 8.2 Other Plots
        • 8.2.1 Bar plots
        • 8.2.2 Histograms
        • 8.2.3 Box Plots
        • 8.2.4 Area Plot
        • 8.2.5 Scatter Plot
        • 8.2.6 Hexagonal Bin Plot
        • 8.2.7 Pie plot
      • 8.3 Plotting with Missing Data
      • 8.4 Plotting Tools
        • 8.4.1 Scatter Matrix Plot
        • 8.4.2 Density Plot
        • 8.4.3 Andrews Curves
        • 8.4.4 Parallel Coordinates
        • 8.4.5 Lag Plot
        • 8.4.6 Autocorrelation Plot
        • 8.4.7 Bootstrap Plot
        • 8.4.8 RadViz
      • 8.5 Plot Formatting
        • 8.5.1 Controlling the Legend
        • 8.5.2 Scales
        • 8.5.3 Plotting on a Secondary Y-axis
        • 8.5.4 Suppressing Tick Resolution Adjustment
        • 8.5.5 Subplots
        • 8.5.6 Using Layout and Targeting Multiple Axes
        • 8.5.7 Plotting With Error Bars
        • 8.5.8 Plotting Tables
        • 8.5.9 Colormaps
      • 8.6 Plotting directly with matplotlib
      • 8.7 Trellis plotting interface
    • 9 Working with Text Data
      • 9.1 Introduction
      • 9.2 Splitting and Replacing Strings
      • 9.3 Indexing with .str
      • 9.4 Extracting Substrings
        • 9.4.1 Extract first match in each subject (extract)
        • 9.4.2 Extract all matches in each subject (extractall)
      • 9.5 Testing for Strings that Match or Contain a Pattern
      • 9.6 Creating Indicator Variables
      • 9.7 Method Summary
    • 10 IO Tools (Text, CSV, HDF5, ...)
      • 10.1 Introduction
      • 10.2 CSV & Text files
        • 10.2.1 Parsing options
        • 10.2.2 Specifying column data types
        • 10.2.3 Naming and Using Columns
        • 10.2.4 Duplicate names parsing
        • 10.2.5 Comments and Empty Lines
        • 10.2.6 Dealing with Unicode Data
        • 10.2.7 Index columns and trailing delimiters
        • 10.2.8 Date Handling
        • 10.2.9 Specifying method for floating-point conversion
        • 10.2.10 Thousand Separators
        • 10.2.11 NA Values
        • 10.2.12 Infinity
        • 10.2.13 Returning Series
        • 10.2.14 Boolean values
        • 10.2.15 Handling “bad” lines
        • 10.2.16 Quoting and Escape Characters
        • 10.2.17 Files with Fixed Width Columns
        • 10.2.18 Indexes
        • 10.2.19 Automatically “sniffing” the delimiter
        • 10.2.20 Iterating through files chunk by chunk
        • 10.2.21 Specifying the parser engine
        • 10.2.22 Writing out Data
      • 10.3 JSON
        • 10.3.1 Writing JSON
        • 10.3.2 Reading JSON
        • 10.3.3 Normalization
        • 10.3.4 Line delimited json
      • 10.4 HTML
        • 10.4.1 Reading HTML Content
        • 10.4.2 Writing to HTML files
      • 10.5 Excel files
        • 10.5.1 Reading Excel Files
        • 10.5.2 Writing Excel Files
        • 10.5.3 Excel writer engines
      • 10.6 Clipboard
      • 10.7 Pickling
      • 10.8 msgpack (experimental)
        • 10.8.1 Read/Write API
      • 10.9 HDF5 (PyTables)
        • 10.9.1 Read/Write API
        • 10.9.2 Fixed Format
        • 10.9.3 Table Format
        • 10.9.4 Hierarchical Keys
        • 10.9.5 Storing Types
        • 10.9.6 Querying
        • 10.9.7 Delete from a Table
        • 10.9.8 Notes & Caveats
        • 10.9.9 DataTypes
        • 10.9.10 External Compatibility
        • 10.9.11 Backwards Compatibility
        • 10.9.12 Performance
        • 10.9.13 Experimental
      • 10.10 SQL Queries
        • 10.10.1 pandas.read_sql_table
        • 10.10.2 pandas.read_sql_query
        • 10.10.3 pandas.read_sql
        • 10.10.4 pandas.DataFrame.to_sql
        • 10.10.5 Writing DataFrames
        • 10.10.6 Reading Tables
        • 10.10.7 Schema support
        • 10.10.8 Querying
        • 10.10.9 Engine connection examples
        • 10.10.10 Advanced SQLAlchemy queries
        • 10.10.11 Sqlite fallback
      • 10.11 Google BigQuery (Experimental)
        • 10.11.1 pandas.io.gbq.read_gbq
        • 10.11.2 pandas.io.gbq.to_gbq
        • 10.11.3 Authentication
        • 10.11.4 Querying
        • 10.11.5 Writing DataFrames
        • 10.11.6 Creating BigQuery Tables
      • 10.12 Stata Format
        • 10.12.1 Writing to Stata format
        • 10.12.2 Reading from Stata format
      • 10.13 SAS Formats
      • 10.14 Other file formats
        • 10.14.1 netCDF
      • 10.15 Performance Considerations
  • Part 2
    • 1 Sparse data structures
      • 1.1 SparseArray
      • 1.2 SparseList
      • 1.3 SparseIndex objects
      • 1.4 Sparse Calculation
      • 1.5 Interaction with scipy.sparse
    • 2 Cookbook
      • 2.1 Idioms
        • 2.1.1 if-then...
        • 2.1.2 Splitting
        • 2.1.3 Building Criteria
      • 2.2 Selection
        • 2.2.1 DataFrames
        • 2.2.2 Panels
        • 2.2.3 New Columns
      • 2.3 MultiIndexing
        • 2.3.1 Arithmetic
        • 2.3.2 Slicing
        • 2.3.3 Sorting
        • 2.3.4 Levels
        • 2.3.5 panelnd
      • 2.4 Missing Data
        • 2.4.1 Replace
      • 2.5 Grouping
        • 2.5.1 Expanding Data
        • 2.5.2 Splitting
        • 2.5.3 Pivot
        • 2.5.4 Apply
      • 2.6 Timeseries
        • 2.6.1 Resampling
      • 2.7 Merge
      • 2.8 Plotting
      • 2.9 Data In/Out
        • 2.9.1 CSV
        • 2.9.2 SQL
        • 2.9.3 Excel
        • 2.9.4 HTML
        • 2.9.5 HDFStore
        • 2.9.6 Binary Files
      • 2.10 Computation
      • 2.11 Timedeltas
      • 2.12 Aliasing Axis Names
      • 2.13 Creating Example Data
    • 3 Computational tools
      • 3.1 Statistical Functions
        • 3.1.1 Percent Change
        • 3.1.2 Covariance
        • 3.1.3 Correlation
        • 3.1.4 Data ranking
      • 3.2 Window Functions
        • 3.2.1 Method Summary
        • 3.2.2 Rolling Windows
        • 3.2.3 Time-aware Rolling
        • 3.2.4 Time-aware Rolling vs. Resampling
        • 3.2.5 Centering Windows
        • 3.2.6 Binary Window Functions
        • 3.2.7 Computing rolling pairwise covariances and correlations
      • 3.3 Aggregation
        • 3.3.1 Applying multiple functions at once
        • 3.3.2 Applying different functions to DataFrame columns
      • 3.4 Expanding Windows
        • 3.4.1 Method Summary
      • 3.5 Exponentially Weighted Windows
    • Time Series / Date functionality
      • 1 Introduction
      • 2 Overview
      • 3 Time Stamps vs. Time Spans
      • 4 Converting to Timestamps
        • 4.1 Invalid Data
        • 4.2 Epoch Timestamps
      • 5 Generating Ranges of Timestamps
      • 6 Timestamp limitations
      • 7 DatetimeIndex
        • 7.1 DatetimeIndex Partial String Indexing
        • 7.2 Datetime Indexing
        • 7.3 Truncating & Fancy Indexing
        • 7.4 Time/Date Components
      • 8 DateOffset objects
        • 8.1 Parametric offsets
        • 8.2 Using offsets with Series / DatetimeIndex
        • 8.3 Custom Business Days (Experimental)
        • 8.4 Business Hour
        • 8.5 Custom Business Hour
        • 8.6 Offset Aliases
        • 8.7 Combining Aliases
        • 8.8 Anchored Offsets
        • 8.9 Anchored Offset Semantics
        • 8.10 Holidays / Holiday Calendars
      • 9 Time series-related instance methods
        • 9.1 Shifting / lagging
        • 9.2 Frequency conversion
        • 9.3 Filling forward / backward
        • 9.4 Converting to Python datetimes
      • 10 Resampling
        • 10.1 Up Sampling
        • 10.2 Sparse Resampling
        • 10.3 Aggregation
      • 11 Time Span Representation
        • 11.1 Period
        • 11.2 PeriodIndex and period_range
        • 11.3 Period Dtypes
        • 11.4 PeriodIndex Partial String Indexing
        • 11.5 Frequency Conversion and Resampling with PeriodIndex
      • 12 Converting between Representations
      • 13 Representing out-of-bounds spans
      • 14 Time Zone Handling
        • 14.1 Working with Time Zones
        • 14.2 Ambiguous Times when Localizing
        • 14.3 TZ aware Dtypes
    • 4 Time Deltas
      • 4.1 Parsing
        • 4.1.1 to_timedelta
        • 4.1.2 Timedelta limitations
      • 4.2 Operations
      • 4.3 Reductions
      • 4.4 Frequency Conversion
      • 4.5 Attributes
      • 4.6 TimedeltaIndex
        • 4.6.1 Using the TimedeltaIndex
        • 4.6.2 Operations
        • 4.6.3 Conversions
      • 4.7 Resampling
    • 5 Categorical Data
      • 5.1 Introduction
      • 5.2 Object Creation
      • 5.3 Description
      • 5.4 Working with categories
        • 5.4.1 Renaming categories
        • 5.4.2 Appending new categories
        • 5.4.3 Removing categories
        • 5.4.4 Removing unused categories
        • 5.4.5 Setting categories
      • 5.5 Sorting and Order
        • 5.5.1 Reordering
        • 5.5.2 Multi Column Sorting
      • 5.6 Comparisons
      • 5.7 Operations
      • 5.8 Data munging
        • 5.8.1 Getting
        • 5.8.2 String and datetime accessors
        • 5.8.3 Setting
        • 5.8.4 Merging
        • 5.8.5 Unioning
      • 5.9 Getting Data In/Out
      • 5.10 Missing Data
      • 5.11 Differences to R’s factor
      • 5.12 Gotchas
        • 5.12.1 Memory Usage
        • 5.12.2 Old style constructor usage
        • 5.12.3 Categorical is not a numpy array
        • 5.12.4 dtype in apply
        • 5.12.5 Categorical Index
        • 5.12.6 Side Effects
    • 6 Remote Data Access
      • 6.1 DataReader
      • 6.2 Google Analytics
        • 6.2.1 Configuring Access to Google Analytics
        • 6.2.2 Using the Google Analytics API
    • 7 Enhancing Performance
      • 7.1 Cython (Writing C extensions for pandas)
        • 7.1.1 Pure python
        • 7.1.2 Plain cython
        • 7.1.3 Adding type
        • 7.1.4 Using ndarray
        • 7.1.5 More advanced techniques
      • 7.2 Using numba
        • 7.2.1 Jit
        • 7.2.2 Vectorize
        • 7.2.3 Caveats
      • 7.3 Expression Evaluation via eval() (Experimental)
        • 7.3.1 Supported Syntax
        • 7.3.2 eval() Examples
        • 7.3.3 The DataFrame.eval method (Experimental)
        • 7.3.4 Local Variables
        • 7.3.5 pandas.eval() Parsers
        • 7.3.6 pandas.eval() Backends
        • 7.3.7 pandas.eval() Performance
        • 7.3.8 Technical Minutia Regarding Expression Evaluation
  • Part 3
    • 1 Caveats and Gotchas
      • 1.1 Using If/Truth Statements with pandas
        • 1.1.1 Bitwise boolean
        • 1.1.2 Using the in operator
      • 1.2 NaN, Integer NA values and NA type promotions
        • 1.2.1 Choice of NA representation
        • 1.2.2 Support for integer NA
        • 1.2.3 NA type promotions
        • 1.2.4 Why not make NumPy like R?
      • 1.3 Integer indexing
      • 1.4 Label-based slicing conventions
        • 1.4.1 Non-monotonic indexes require exact matches
        • 1.4.2 Endpoints are inclusive
      • 1.5 Miscellaneous indexing gotchas
        • 1.5.1 Reindex versus ix gotchas
        • 1.5.2 Reindex potentially changes underlying Series dtype
      • 1.6 Parsing Dates from Text Files
      • 1.7 Differences with NumPy
      • 1.8 Thread-safety
      • 1.9 HTML Table Parsing
      • 1.10 Byte-Ordering Issues
    • 2 rpy2 / R interface
      • 2.1 Updating your code to use rpy2 functions
      • 2.2 R interface with rpy2
      • 2.3 Transferring R data sets into Python
      • 2.4 Converting DataFrames into R objects
      • 2.5 Calling R functions with pandas objects
      • 2.6 High-level interface to R estimators
    • 3 pandas Ecosystem
      • 3.1 Statistics and Machine Learning
        • 3.1.1 Statsmodels
        • 3.1.2 sklearn-pandas
      • 3.2 Visualization
        • 3.2.1 Bokeh
        • 3.2.2 yhat/ggplot
        • 3.2.3 Seaborn
        • 3.2.4 Vincent
        • 3.2.5 IPython Vega
        • 3.2.6 Plotly
        • 3.2.7 Pandas-Qt
      • 3.3 IDE
        • 3.3.1 IPython
        • 3.3.2 quantopian/qgrid
        • 3.3.3 Spyder
      • 3.4 API
        • 3.4.1 pandas-datareader
        • 3.4.2 quandl/Python
        • 3.4.3 pydatastream
        • 3.4.4 pandaSDMX
        • 3.4.5 fredapi
      • 3.5 Domain Specific
        • 3.5.1 Geopandas
        • 3.5.2 xarray
      • 3.6 Out-of-core
        • 3.6.1 Dask
        • 3.6.2 Blaze
        • 3.6.3 Odo
    • 4 Comparison with R / R libraries
      • 4.1 Quick Reference
        • 4.1.1 Querying, Filtering, Sampling
        • 4.1.2 Sorting
        • 4.1.3 Transforming
        • 4.1.4 Grouping and Summarizing
      • 4.2 Base R
        • 4.2.1 Slicing with R’s |c|_
        • 4.2.2 |aggregate|_
        • 4.2.3 |match|_
        • 4.2.4 |tapply|_
        • 4.2.5 |subset|_
        • 4.2.6 |with|_
      • 4.3 plyr
        • 4.3.1 |ddply|_
      • 4.4 reshape / reshape2
        • 4.4.1 melt.array
        • 4.4.2 melt.list
        • 4.4.3 melt.data.frame
        • 4.4.4 cast
        • 4.4.5 factor
    • 5 Comparison with SQL
      • 5.1 SELECT
      • 5.2 WHERE
      • 5.3 GROUP BY
      • 5.4 JOIN
        • 5.4.1 INNER JOIN
        • 5.4.2 LEFT OUTER JOIN
        • 5.4.3 RIGHT JOIN
        • 5.4.4 FULL JOIN
      • 5.5 UNION
      • 5.6 Pandas equivalents for some SQL analytic and aggregate functions
        • 5.6.1 Top N rows with offset
        • 5.6.2 Top N rows per group
      • 5.7 UPDATE
      • 5.8 DELETE
    • 6 Comparison with SAS
      • 6.1 Data Structures
        • 6.1.1 General Terminology Translation
        • 6.1.2 DataFrame / Series
        • 6.1.3 Index
      • 6.2 Data Input / Output
        • 6.2.1 Constructing a DataFrame from Values
        • 6.2.2 Reading External Data
        • 6.2.3 Exporting Data
      • 6.3 Data Operations
        • 6.3.1 Operations on Columns
        • 6.3.2 Filtering
        • 6.3.3 If/Then Logic
        • 6.3.4 Date Functionality
        • 6.3.5 Selection of Columns
        • 6.3.6 Sorting by Values
      • 6.4 Merging
      • 6.5 Missing Data
      • 6.6 GroupBy
        • 6.6.1 Aggregation
        • 6.6.2 Transformation
        • 6.6.3 By Group Processing
      • 6.7 Other Considerations
        • 6.7.1 Disk vs Memory
        • 6.7.2 Data Interop
    • 7 Internals
      • 7.1 Indexing
        • 7.1.1 MultiIndex
      • 7.2 Subclassing pandas Data Structures
        • 7.2.1 Override Constructor Properties
        • 7.2.2 Define Original Properties
Pandas Doc
  • Docs »
  • Part 2 »
  • Time Series / Date functionality »
  • 9 Time series-related instance methods
  • View page source

9 Time series-related instance methods

9.1 Shifting / lagging

One may want to shift or lag the values in a time series back and forward in time. The method for this is shift, which is available on all of the pandas objects.

In [1]: ts = ts[:5]

In [2]: ts.shift(1)
Out[2]: 
2011-01-31         NaN
2011-02-28    0.469112
2011-03-31   -0.282863
2011-04-29   -1.509059
2011-05-31   -1.135632
Freq: BM, dtype: float64

The shift method accepts an freq argument which can accept a DateOffset class or other timedelta-like object or also a offset alias:

In [3]: ts.shift(5, freq=datetools.bday)
Out[3]: 
2011-02-07    0.469112
2011-03-07   -0.282863
2011-04-07   -1.509059
2011-05-06   -1.135632
2011-06-07    1.212112
dtype: float64

In [4]: ts.shift(5, freq='BM')
Out[4]: 
2011-06-30    0.469112
2011-07-29   -0.282863
2011-08-31   -1.509059
2011-09-30   -1.135632
2011-10-31    1.212112
Freq: BM, dtype: float64

Rather than changing the alignment of the data and the index, DataFrame and Series objects also have a tshift convenience method that changes all the dates in the index by a specified number of offsets:

In [5]: ts.tshift(5, freq='D')
Out[5]: 
2011-02-05    0.469112
2011-03-05   -0.282863
2011-04-05   -1.509059
2011-05-04   -1.135632
2011-06-05    1.212112
dtype: float64

Note that with tshift, the leading entry is no longer NaN because the data is not being realigned.

9.2 Frequency conversion

The primary function for changing frequencies is the asfreq function. For a DatetimeIndex, this is basically just a thin, but convenient wrapper around reindex which generates a date_range and calls reindex.

In [6]: dr = pd.date_range('1/1/2010', periods=3, freq=3 * datetools.bday)

In [7]: ts = pd.Series(randn(3), index=dr)

In [8]: ts
Out[8]: 
2010-01-01    0.469112
2010-01-06   -0.282863
2010-01-11   -1.509059
Freq: 3B, dtype: float64

In [9]: ts.asfreq(BDay())
Out[9]: 
2010-01-01    0.469112
2010-01-04         NaN
2010-01-05         NaN
2010-01-06   -0.282863
2010-01-07         NaN
2010-01-08         NaN
2010-01-11   -1.509059
Freq: B, dtype: float64

asfreq provides a further convenience so you can specify an interpolation method for any gaps that may appear after the frequency conversion

In [10]: ts.asfreq(BDay(), method='pad')
Out[10]: 
2010-01-01    0.469112
2010-01-04    0.469112
2010-01-05    0.469112
2010-01-06   -0.282863
2010-01-07   -0.282863
2010-01-08   -0.282863
2010-01-11   -1.509059
Freq: B, dtype: float64

9.3 Filling forward / backward

Related to asfreq and reindex is the fillna function documented in the missing data section.

9.4 Converting to Python datetimes

DatetimeIndex can be converted to an array of Python native datetime.datetime objects using the to_pydatetime method.

Next Previous

© Copyright 2016.

Built with Sphinx using a theme provided by Read the Docs.