Series
Constructor
Series ([data, index, dtype, name, copy, ...]) |
One-dimensional ndarray with axis labels (including time series). |
Attributes
- Axes
- index: axis labels
Series.values |
Return Series as ndarray or ndarray-like |
Series.dtype |
return the dtype object of the underlying data |
Series.ftype |
return if the data is sparse|dense |
Series.shape |
return a tuple of the shape of the underlying data |
Series.nbytes |
return the number of bytes in the underlying data |
Series.ndim |
return the number of dimensions of the underlying data, |
Series.size |
return the number of elements in the underlying data |
Series.strides |
return the strides of the underlying data |
Series.itemsize |
return the size of the dtype of the item of the underlying data |
Series.base |
return the base object if the memory of the underlying data is |
Series.T |
return the transpose, which is by definition self |
Series.memory_usage ([index, deep]) |
Memory usage of the Series |
Conversion
Series.astype (dtype[, copy, raise_on_error]) |
Cast object to input numpy.dtype |
Series.copy ([deep]) |
Make a copy of this objects data. |
Series.isnull () |
Return a boolean same-sized object indicating if the values are null. |
Series.notnull () |
Return a boolean same-sized object indicating if the values are not null. |
Indexing, iteration
Series.get (key[, default]) |
Get item from object for given key (DataFrame column, Panel slice, etc.). |
Series.at |
Fast label-based scalar accessor |
Series.iat |
Fast integer location scalar accessor. |
Series.ix |
A primarily label-location based indexer, with integer position fallback. |
Series.loc |
Purely label-location based indexer for selection by label. |
Series.iloc |
Purely integer-location based indexing for selection by position. |
Series.__iter__ () |
provide iteration over the values of the Series |
Series.iteritems () |
Lazily iterate over (index, value) tuples |
For more information on .at
, .iat
, .ix
, .loc
, and
.iloc
, see the indexing documentation.
Binary operator functions
Series.add (other[, level, fill_value, axis]) |
Addition of series and other, element-wise (binary operator add). |
Series.sub (other[, level, fill_value, axis]) |
Subtraction of series and other, element-wise (binary operator sub). |
Series.mul (other[, level, fill_value, axis]) |
Multiplication of series and other, element-wise (binary operator mul). |
Series.div (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator truediv). |
Series.truediv (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator truediv). |
Series.floordiv (other[, level, fill_value, axis]) |
Integer division of series and other, element-wise (binary operator floordiv). |
Series.mod (other[, level, fill_value, axis]) |
Modulo of series and other, element-wise (binary operator mod). |
Series.pow (other[, level, fill_value, axis]) |
Exponential power of series and other, element-wise (binary operator pow). |
Series.radd (other[, level, fill_value, axis]) |
Addition of series and other, element-wise (binary operator radd). |
Series.rsub (other[, level, fill_value, axis]) |
Subtraction of series and other, element-wise (binary operator rsub). |
Series.rmul (other[, level, fill_value, axis]) |
Multiplication of series and other, element-wise (binary operator rmul). |
Series.rdiv (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rtruediv (other[, level, fill_value, axis]) |
Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rfloordiv (other[, level, fill_value, ...]) |
Integer division of series and other, element-wise (binary operator rfloordiv). |
Series.rmod (other[, level, fill_value, axis]) |
Modulo of series and other, element-wise (binary operator rmod). |
Series.rpow (other[, level, fill_value, axis]) |
Exponential power of series and other, element-wise (binary operator rpow). |
Series.combine (other, func[, fill_value]) |
Perform elementwise binary operation on two Series using given function |
Series.combine_first (other) |
Combine Series values, choosing the calling Series’s values first. |
Series.round ([decimals]) |
Round each value in a Series to the given number of decimals. |
Series.lt (other[, axis]) |
|
Series.gt (other[, axis]) |
|
Series.le (other[, axis]) |
|
Series.ge (other[, axis]) |
|
Series.ne (other[, axis]) |
|
Series.eq (other[, axis]) |
Function application, GroupBy & Window
Series.apply (func[, convert_dtype, args]) |
Invoke function on values of Series. |
Series.map (arg[, na_action]) |
Map values of Series using input correspondence (which can be |
Series.groupby ([by, axis, level, as_index, ...]) |
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns. |
Series.rolling (window[, min_periods, freq, ...]) |
Provides rolling window calculcations. |
Series.expanding ([min_periods, freq, ...]) |
Provides expanding transformations. |
Series.ewm ([com, span, halflife, alpha, ...]) |
Provides exponential weighted functions |
Computations / Descriptive Stats
Series.abs () |
Return an object with absolute value taken–only applicable to objects that are all numeric. |
Series.all ([axis, bool_only, skipna, level]) |
Return whether all elements are True over requested axis |
Series.any ([axis, bool_only, skipna, level]) |
Return whether any element is True over requested axis |
Series.autocorr ([lag]) |
Lag-N autocorrelation |
Series.between (left, right[, inclusive]) |
Return boolean Series equivalent to left <= series <= right. |
Series.clip ([lower, upper, axis]) |
Trim values at input threshold(s). |
Series.clip_lower (threshold[, axis]) |
Return copy of the input with values below given value(s) truncated. |
Series.clip_upper (threshold[, axis]) |
Return copy of input with values above given value(s) truncated. |
Series.corr (other[, method, min_periods]) |
Compute correlation with other Series, excluding missing values |
Series.count ([level]) |
Return number of non-NA/null observations in the Series |
Series.cov (other[, min_periods]) |
Compute covariance with Series, excluding missing values |
Series.cummax ([axis, skipna]) |
Return cumulative max over requested axis. |
Series.cummin ([axis, skipna]) |
Return cumulative minimum over requested axis. |
Series.cumprod ([axis, skipna]) |
Return cumulative product over requested axis. |
Series.cumsum ([axis, skipna]) |
Return cumulative sum over requested axis. |
Series.describe ([percentiles, include, exclude]) |
Generate various summary statistics, excluding NaN values. |
Series.diff ([periods]) |
1st discrete difference of object |
Series.factorize ([sort, na_sentinel]) |
Encode the object as an enumerated type or categorical variable |
Series.kurt ([axis, skipna, level, numeric_only]) |
Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.mad ([axis, skipna, level]) |
Return the mean absolute deviation of the values for the requested axis |
Series.max ([axis, skipna, level, numeric_only]) |
This method returns the maximum of the values in the object. |
Series.mean ([axis, skipna, level, numeric_only]) |
Return the mean of the values for the requested axis |
Series.median ([axis, skipna, level, ...]) |
Return the median of the values for the requested axis |
Series.min ([axis, skipna, level, numeric_only]) |
This method returns the minimum of the values in the object. |
Series.mode () |
Returns the mode(s) of the dataset. |
Series.nlargest (*args, **kwargs) |
Return the largest n elements. |
Series.nsmallest (*args, **kwargs) |
Return the smallest n elements. |
Series.pct_change ([periods, fill_method, ...]) |
Percent change over given number of periods. |
Series.prod ([axis, skipna, level, numeric_only]) |
Return the product of the values for the requested axis |
Series.quantile ([q, interpolation]) |
Return value at the given quantile, a la numpy.percentile. |
Series.rank ([axis, method, numeric_only, ...]) |
Compute numerical data ranks (1 through n) along axis. |
Series.sem ([axis, skipna, level, ddof, ...]) |
Return unbiased standard error of the mean over requested axis. |
Series.skew ([axis, skipna, level, numeric_only]) |
Return unbiased skew over requested axis |
Series.std ([axis, skipna, level, ddof, ...]) |
Return sample standard deviation over requested axis. |
Series.sum ([axis, skipna, level, numeric_only]) |
Return the sum of the values for the requested axis |
Series.var ([axis, skipna, level, ddof, ...]) |
Return unbiased variance over requested axis. |
Series.unique () |
Return array of unique values in the object. |
Series.nunique ([dropna]) |
Return number of unique elements in the object. |
Series.is_unique |
Return boolean if values in the object are unique |
Series.is_monotonic |
Return boolean if values in the object are |
Series.is_monotonic_increasing |
Return boolean if values in the object are |
Series.is_monotonic_decreasing |
Return boolean if values in the object are |
Series.value_counts ([normalize, sort, ...]) |
Returns object containing counts of unique values. |
Reindexing / Selection / Label manipulation
Series.align (other[, join, axis, level, ...]) |
Align two object on their axes with the |
Series.drop (labels[, axis, level, inplace, ...]) |
Return new object with labels in requested axis removed. |
Series.drop_duplicates (*args, **kwargs) |
Return Series with duplicate values removed |
Series.duplicated (*args, **kwargs) |
Return boolean Series denoting duplicate values |
Series.equals (other) |
Determines if two NDFrame objects contain the same elements. |
Series.first (offset) |
Convenience method for subsetting initial periods of time series data based on a date offset. |
Series.head ([n]) |
Returns first n rows |
Series.idxmax ([axis, skipna]) |
Index of first occurrence of maximum of values. |
Series.idxmin ([axis, skipna]) |
Index of first occurrence of minimum of values. |
Series.isin (values) |
Return a boolean Series showing whether each element in the Series is exactly contained in the passed sequence of values . |
Series.last (offset) |
Convenience method for subsetting final periods of time series data based on a date offset. |
Series.reindex ([index]) |
Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. |
Series.reindex_like (other[, method, copy, ...]) |
Return an object with matching indices to myself. |
Series.rename ([index]) |
Alter axes input function or functions. |
Series.rename_axis (mapper[, axis, copy, inplace]) |
Alter index and / or columns using input function or functions. |
Series.reset_index ([level, drop, name, inplace]) |
Analogous to the pandas.DataFrame.reset_index() function, see docstring there. |
Series.sample ([n, frac, replace, weights, ...]) |
Returns a random sample of items from an axis of object. |
Series.select (crit[, axis]) |
Return data corresponding to axis labels matching criteria |
Series.take (indices[, axis, convert, is_copy]) |
return Series corresponding to requested indices |
Series.tail ([n]) |
Returns last n rows |
Series.truncate ([before, after, axis, copy]) |
Truncates a sorted NDFrame before and/or after some particular index value. |
Series.where (cond[, other, inplace, axis, ...]) |
Return an object of same shape as self and whose corresponding entries are from self where cond is True and otherwise are from other. |
Series.mask (cond[, other, inplace, axis, ...]) |
Return an object of same shape as self and whose corresponding entries are from self where cond is False and otherwise are from other. |
Missing data handling
Series.dropna ([axis, inplace]) |
Return Series without null values |
Series.fillna ([value, method, axis, ...]) |
Fill NA/NaN values using the specified method |
Series.interpolate ([method, axis, limit, ...]) |
Interpolate values according to different methods. |
Reshaping, sorting
Series.argsort ([axis, kind, order]) |
Overrides ndarray.argsort. |
Series.reorder_levels (order) |
Rearrange index levels using input order. |
Series.sort_values ([axis, ascending, ...]) |
Sort by the values along either axis |
Series.sort_index ([axis, level, ascending, ...]) |
Sort object by labels (along an axis) |
Series.sortlevel ([level, ascending, ...]) |
Sort Series with MultiIndex by chosen level. |
Series.swaplevel ([i, j, copy]) |
Swap levels i and j in a MultiIndex |
Series.unstack ([level, fill_value]) |
Unstack, a.k.a. |
Series.searchsorted (v[, side, sorter]) |
Find indices where elements should be inserted to maintain order. |
Combining / joining / merging
Series.append (to_append[, ignore_index, ...]) |
Concatenate two or more Series. |
Series.replace ([to_replace, value, inplace, ...]) |
Replace values given in ‘to_replace’ with ‘value’. |
Series.update (other) |
Modify Series in place using non-NA values from passed Series. |
Datetimelike Properties
Series.dt
can be used to access the values of the series as
datetimelike and return several properties.
These can be accessed like Series.dt.<property>
.
Datetime Properties
Series.dt.date |
Returns numpy array of datetime.date. |
Series.dt.time |
Returns numpy array of datetime.time. |
Series.dt.year |
The year of the datetime |
Series.dt.month |
The month as January=1, December=12 |
Series.dt.day |
The days of the datetime |
Series.dt.hour |
The hours of the datetime |
Series.dt.minute |
The minutes of the datetime |
Series.dt.second |
The seconds of the datetime |
Series.dt.microsecond |
The microseconds of the datetime |
Series.dt.nanosecond |
The nanoseconds of the datetime |
Series.dt.week |
The week ordinal of the year |
Series.dt.weekofyear |
The week ordinal of the year |
Series.dt.dayofweek |
The day of the week with Monday=0, Sunday=6 |
Series.dt.weekday |
The day of the week with Monday=0, Sunday=6 |
Series.dt.weekday_name |
The name of day in a week (ex: Friday) |
Series.dt.dayofyear |
The ordinal day of the year |
Series.dt.quarter |
The quarter of the date |
Series.dt.is_month_start |
Logical indicating if first day of month (defined by frequency) |
Series.dt.is_month_end |
Logical indicating if last day of month (defined by frequency) |
Series.dt.is_quarter_start |
Logical indicating if first day of quarter (defined by frequency) |
Series.dt.is_quarter_end |
Logical indicating if last day of quarter (defined by frequency) |
Series.dt.is_year_start |
Logical indicating if first day of year (defined by frequency) |
Series.dt.is_year_end |
Logical indicating if last day of year (defined by frequency) |
Series.dt.is_leap_year |
Logical indicating if the date belongs to a leap year |
Series.dt.daysinmonth |
The number of days in the month |
Series.dt.days_in_month |
The number of days in the month |
Series.dt.tz |
|
Series.dt.freq |
get/set the frequncy of the Index |
Datetime Methods
Series.dt.to_period (*args, **kwargs) |
Cast to PeriodIndex at a particular frequency |
Series.dt.to_pydatetime () |
|
Series.dt.tz_localize (*args, **kwargs) |
Localize tz-naive DatetimeIndex to given time zone (using |
Series.dt.tz_convert (*args, **kwargs) |
Convert tz-aware DatetimeIndex from one time zone to another (using |
Series.dt.normalize (*args, **kwargs) |
Return DatetimeIndex with times to midnight. |
Series.dt.strftime (*args, **kwargs) |
Return an array of formatted strings specified by date_format, which supports the same string format as the python standard library. |
Series.dt.round (*args, **kwargs) |
round the index to the specified freq |
Series.dt.floor (*args, **kwargs) |
floor the index to the specified freq |
Series.dt.ceil (*args, **kwargs) |
floor the index to the specified freq |
Timedelta Properties
Series.dt.days |
Number of days for each element. |
Series.dt.seconds |
Number of seconds (>= 0 and less than 1 day) for each element. |
Series.dt.microseconds |
Number of microseconds (>= 0 and less than 1 second) for each element. |
Series.dt.nanoseconds |
Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. |
Series.dt.components |
Return a dataframe of the components (days, hours, minutes, seconds, milliseconds, microseconds, nanoseconds) of the Timedeltas. |
Timedelta Methods
Series.dt.to_pytimedelta () |
|
Series.dt.total_seconds (*args, **kwargs) |
Total duration of each element expressed in seconds. |
String handling
Series.str
can be used to access the values of the series as
strings and apply several methods to it. These can be accessed like
Series.str.<function/property>
.
Series.str.capitalize () |
Convert strings in the Series/Index to be capitalized. |
Series.str.cat ([others, sep, na_rep]) |
Concatenate strings in the Series/Index with given separator. |
Series.str.center (width[, fillchar]) |
Filling left and right side of strings in the Series/Index with an additional character. |
Series.str.contains (pat[, case, flags, na, ...]) |
Return boolean Series/array whether given pattern/regex is contained in each string in the Series/Index. |
Series.str.count (pat[, flags]) |
Count occurrences of pattern in each string of the Series/Index. |
Series.str.decode (encoding[, errors]) |
Decode character string in the Series/Index using indicated encoding. |
Series.str.encode (encoding[, errors]) |
Encode character string in the Series/Index using indicated encoding. |
Series.str.endswith (pat[, na]) |
Return boolean Series indicating whether each string in the Series/Index ends with passed pattern. |
Series.str.extract (pat[, flags, expand]) |
For each subject string in the Series, extract groups from the first match of regular expression pat. |
Series.str.extractall (pat[, flags]) |
For each subject string in the Series, extract groups from all matches of regular expression pat. |
Series.str.find (sub[, start, end]) |
Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.findall (pat[, flags]) |
Find all occurrences of pattern or regular expression in the Series/Index. |
Series.str.get (i) |
Extract element from lists, tuples, or strings in each element in the Series/Index. |
Series.str.index (sub[, start, end]) |
Return lowest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.join (sep) |
Join lists contained as elements in the Series/Index with passed delimiter. |
Series.str.len () |
Compute length of each string in the Series/Index. |
Series.str.ljust (width[, fillchar]) |
Filling right side of strings in the Series/Index with an additional character. |
Series.str.lower () |
Convert strings in the Series/Index to lowercase. |
Series.str.lstrip ([to_strip]) |
Strip whitespace (including newlines) from each string in the Series/Index from left side. |
Series.str.match (pat[, case, flags, na, ...]) |
Deprecated: Find groups in each string in the Series/Index using passed regular expression. |
Series.str.normalize (form) |
Return the Unicode normal form for the strings in the Series/Index. |
Series.str.pad (width[, side, fillchar]) |
Pad strings in the Series/Index with an additional character to specified side. |
Series.str.partition ([pat, expand]) |
Split the string at the first occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. |
Series.str.repeat (repeats) |
Duplicate each string in the Series/Index by indicated number of times. |
Series.str.replace (pat, repl[, n, case, flags]) |
Replace occurrences of pattern/regex in the Series/Index with some other string. |
Series.str.rfind (sub[, start, end]) |
Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.rindex (sub[, start, end]) |
Return highest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.rjust (width[, fillchar]) |
Filling left side of strings in the Series/Index with an additional character. |
Series.str.rpartition ([pat, expand]) |
Split the string at the last occurrence of sep, and return 3 elements containing the part before the separator, the separator itself, and the part after the separator. |
Series.str.rstrip ([to_strip]) |
Strip whitespace (including newlines) from each string in the Series/Index from right side. |
Series.str.slice ([start, stop, step]) |
Slice substrings from each element in the Series/Index |
Series.str.slice_replace ([start, stop, repl]) |
Replace a slice of each string in the Series/Index with another string. |
Series.str.split ([pat, n, expand]) |
Split each string (a la re.split) in the Series/Index by given pattern, propagating NA values. |
Series.str.rsplit ([pat, n, expand]) |
Split each string in the Series/Index by the given delimiter string, starting at the end of the string and working to the front. |
Series.str.startswith (pat[, na]) |
Return boolean Series/array indicating whether each string in the Series/Index starts with passed pattern. |
Series.str.strip ([to_strip]) |
Strip whitespace (including newlines) from each string in the Series/Index from left and right sides. |
Series.str.swapcase () |
Convert strings in the Series/Index to be swapcased. |
Series.str.title () |
Convert strings in the Series/Index to titlecase. |
Series.str.translate (table[, deletechars]) |
Map all characters in the string through the given mapping table. |
Series.str.upper () |
Convert strings in the Series/Index to uppercase. |
Series.str.wrap (width, **kwargs) |
Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. |
Series.str.zfill (width) |
Filling left side of strings in the Series/Index with 0. |
Series.str.isalnum () |
Check whether all characters in each string in the Series/Index are alphanumeric. |
Series.str.isalpha () |
Check whether all characters in each string in the Series/Index are alphabetic. |
Series.str.isdigit () |
Check whether all characters in each string in the Series/Index are digits. |
Series.str.isspace () |
Check whether all characters in each string in the Series/Index are whitespace. |
Series.str.islower () |
Check whether all characters in each string in the Series/Index are lowercase. |
Series.str.isupper () |
Check whether all characters in each string in the Series/Index are uppercase. |
Series.str.istitle () |
Check whether all characters in each string in the Series/Index are titlecase. |
Series.str.isnumeric () |
Check whether all characters in each string in the Series/Index are numeric. |
Series.str.isdecimal () |
Check whether all characters in each string in the Series/Index are decimal. |
Series.str.get_dummies ([sep]) |
Split each string in the Series by sep and return a frame of dummy/indicator variables. |
Categorical
If the Series is of dtype category
, Series.cat
can be used to change the the categorical
data. This accessor is similar to the Series.dt
or Series.str
and has the
following usable methods and properties:
Series.cat.categories |
The categories of this categorical. |
Series.cat.ordered |
Gets the ordered attribute |
Series.cat.codes |
Series.cat.rename_categories (*args, **kwargs) |
Renames categories. |
Series.cat.reorder_categories (*args, **kwargs) |
Reorders categories as specified in new_categories. |
Series.cat.add_categories (*args, **kwargs) |
Add new categories. |
Series.cat.remove_categories (*args, **kwargs) |
Removes the specified categories. |
Series.cat.remove_unused_categories (*args, ...) |
Removes categories which are not used. |
Series.cat.set_categories (*args, **kwargs) |
Sets the categories to the specified new_categories. |
Series.cat.as_ordered (*args, **kwargs) |
Sets the Categorical to be ordered |
Series.cat.as_unordered (*args, **kwargs) |
Sets the Categorical to be unordered |
To create a Series of dtype category
, use cat = s.astype("category")
.
The following two Categorical
constructors are considered API but should only be used when
adding ordering information or special categories is need at creation time of the categorical data:
Categorical (values[, categories, ordered, ...]) |
Represents a categorical variable in classic R / S-plus fashion |
Categorical.from_codes (codes, categories[, ...]) |
Make a Categorical type from codes and categories arrays. |
np.asarray(categorical)
works by implementing the array interface. Be aware, that this converts
the Categorical back to a numpy array, so levels and order information is not preserved!
Categorical.__array__ ([dtype]) |
The numpy array interface. |
Plotting
Series.plot
is both a callable method and a namespace attribute for
specific plotting methods of the form Series.plot.<kind>
.
Series.plot ([kind, ax, figsize, ....]) |
Series plotting accessor and method |
Series.plot.area (**kwds) |
Area plot |
Series.plot.bar (**kwds) |
Vertical bar plot |
Series.plot.barh (**kwds) |
Horizontal bar plot |
Series.plot.box (**kwds) |
Boxplot |
Series.plot.density (**kwds) |
Kernel Density Estimate plot |
Series.plot.hist ([bins]) |
Histogram |
Series.plot.kde (**kwds) |
Kernel Density Estimate plot |
Series.plot.line (**kwds) |
Line plot |
Series.plot.pie (**kwds) |
Pie chart |
Series.hist ([by, ax, grid, xlabelsize, ...]) |
Draw histogram of the input series using matplotlib |
Serialization / IO / Conversion
Series.from_csv (path[, sep, parse_dates, ...]) |
Read CSV file (DISCOURAGED, please use pandas.read_csv() instead). |
Series.to_pickle (path) |
Pickle (serialize) object to input file path. |
Series.to_csv (path[, index, sep, na_rep, ...]) |
Write Series to a comma-separated values (csv) file |
Series.to_dict () |
Convert Series to {label -> value} dict |
Series.to_frame ([name]) |
Convert Series to DataFrame |
Series.to_xarray () |
Return an xarray object from the pandas object. |
Series.to_hdf (path_or_buf, key, **kwargs) |
Activate the HDFStore. |
Series.to_sql (name, con[, flavor, schema, ...]) |
Write records stored in a DataFrame to a SQL database. |
Series.to_msgpack ([path_or_buf, encoding]) |
msgpack (serialize) object to input file path |
Series.to_json ([path_or_buf, orient, ...]) |
Convert the object to a JSON string. |
Series.to_sparse ([kind, fill_value]) |
Convert Series to SparseSeries |
Series.to_dense () |
Return dense representation of NDFrame (as opposed to sparse) |
Series.to_string ([buf, na_rep, ...]) |
Render a string representation of the Series |
Series.to_clipboard ([excel, sep]) |
Attempt to write text representation of object to the system clipboard This can be pasted into Excel, for example. |
Sparse methods
SparseSeries.to_coo ([row_levels, ...]) |
Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
SparseSeries.from_coo (A[, dense_index]) |
Create a SparseSeries from a scipy.sparse.coo_matrix. |