Source code for pandas.io.stata

"""
Module contains tools for processing Stata files into DataFrames

The StataReader below was originally written by Joe Presbrey as part of PyDTA.
It has been extended and improved by Skipper Seabold from the Statsmodels
project who also developed the StataWriter and was finally added to pandas in
a once again improved version.

You can find more information on http://presbrey.mit.edu/PyDTA and
http://www.statsmodels.org/devel/
"""
import numpy as np

import sys
import struct
from dateutil.relativedelta import relativedelta

from pandas.types.common import (is_categorical_dtype, is_datetime64_dtype,
                                 _ensure_object)

from pandas.core.base import StringMixin
from pandas.core.categorical import Categorical
from pandas.core.frame import DataFrame
from pandas.core.series import Series
import datetime
from pandas import compat, to_timedelta, to_datetime, isnull, DatetimeIndex
from pandas.compat import lrange, lmap, lzip, text_type, string_types, range, \
    zip, BytesIO
from pandas.util.decorators import Appender
import pandas as pd

from pandas.io.common import get_filepath_or_buffer, BaseIterator
from pandas.lib import max_len_string_array, infer_dtype
from pandas.tslib import NaT, Timestamp

_version_error = ("Version of given Stata file is not 104, 105, 108, "
                  "113 (Stata 8/9), 114 (Stata 10/11), 115 (Stata 12), "
                  "117 (Stata 13), or 118 (Stata 14)")

_statafile_processing_params1 = """\
convert_dates : boolean, defaults to True
    Convert date variables to DataFrame time values
convert_categoricals : boolean, defaults to True
    Read value labels and convert columns to Categorical/Factor variables"""

_encoding_params = """\
encoding : string, None or encoding
    Encoding used to parse the files. None defaults to iso-8859-1."""

_statafile_processing_params2 = """\
index : identifier of index column
    identifier of column that should be used as index of the DataFrame
convert_missing : boolean, defaults to False
    Flag indicating whether to convert missing values to their Stata
    representations.  If False, missing values are replaced with nans.
    If True, columns containing missing values are returned with
    object data types and missing values are represented by
    StataMissingValue objects.
preserve_dtypes : boolean, defaults to True
    Preserve Stata datatypes. If False, numeric data are upcast to pandas
    default types for foreign data (float64 or int64)
columns : list or None
    Columns to retain.  Columns will be returned in the given order.  None
    returns all columns
order_categoricals : boolean, defaults to True
    Flag indicating whether converted categorical data are ordered."""

_chunksize_params = """\
chunksize : int, default None
    Return StataReader object for iterations, returns chunks with
    given number of lines"""

_iterator_params = """\
iterator : boolean, default False
    Return StataReader object"""

_read_stata_doc = """Read Stata file into DataFrame

Parameters
----------
filepath_or_buffer : string or file-like object
    Path to .dta file or object implementing a binary read() functions
%s
%s
%s
%s
%s

Returns
-------
DataFrame or StataReader

Examples
--------
Read a Stata dta file:

>>> df = pandas.read_stata('filename.dta')

Read a Stata dta file in 10,000 line chunks:

>>> itr = pandas.read_stata('filename.dta', chunksize=10000)
>>> for chunk in itr:
>>>     do_something(chunk)
""" % (_statafile_processing_params1, _encoding_params,
       _statafile_processing_params2, _chunksize_params,
       _iterator_params)

_data_method_doc = """Reads observations from Stata file, converting them into a dataframe

This is a legacy method.  Use `read` in new code.

Parameters
----------
%s
%s

Returns
-------
DataFrame
""" % (_statafile_processing_params1, _statafile_processing_params2)


_read_method_doc = """\
Reads observations from Stata file, converting them into a dataframe

Parameters
----------
nrows : int
    Number of lines to read from data file, if None read whole file.
%s
%s

Returns
-------
DataFrame
""" % (_statafile_processing_params1, _statafile_processing_params2)


_stata_reader_doc = """\
Class for reading Stata dta files.

Parameters
----------
path_or_buf : string or file-like object
    Path to .dta file or object implementing a binary read() functions
%s
%s
%s
%s
""" % (_statafile_processing_params1, _statafile_processing_params2,
       _encoding_params, _chunksize_params)


@Appender(_read_stata_doc)
[docs]def read_stata(filepath_or_buffer, convert_dates=True, convert_categoricals=True, encoding=None, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, chunksize=None, iterator=False): reader = StataReader(filepath_or_buffer, convert_dates=convert_dates, convert_categoricals=convert_categoricals, index=index, convert_missing=convert_missing, preserve_dtypes=preserve_dtypes, columns=columns, order_categoricals=order_categoricals, chunksize=chunksize, encoding=encoding) if iterator or chunksize: try: return reader except StopIteration: reader.close() try: return reader.read() finally: reader.close()
_date_formats = ["%tc", "%tC", "%td", "%d", "%tw", "%tm", "%tq", "%th", "%ty"] stata_epoch = datetime.datetime(1960, 1, 1) def _stata_elapsed_date_to_datetime_vec(dates, fmt): """ Convert from SIF to datetime. http://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series The Stata Internal Format date to convert to datetime according to fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty Returns Returns ------- converted : Series The converted dates Examples -------- >>> import pandas as pd >>> dates = pd.Series([52]) >>> _stata_elapsed_date_to_datetime_vec(dates , "%tw") 0 1961-01-01 dtype: datetime64[ns] Notes ----- datetime/c - tc milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day datetime/C - tC - NOT IMPLEMENTED milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds date - td days since 01jan1960 (01jan1960 = 0) weekly date - tw weeks since 1960w1 This assumes 52 weeks in a year, then adds 7 * remainder of the weeks. The datetime value is the start of the week in terms of days in the year, not ISO calendar weeks. monthly date - tm months since 1960m1 quarterly date - tq quarters since 1960q1 half-yearly date - th half-years since 1960h1 yearly date - ty years since 0000 If you don't have pandas with datetime support, then you can't do milliseconds accurately. """ MIN_YEAR, MAX_YEAR = Timestamp.min.year, Timestamp.max.year MAX_DAY_DELTA = (Timestamp.max - datetime.datetime(1960, 1, 1)).days MIN_DAY_DELTA = (Timestamp.min - datetime.datetime(1960, 1, 1)).days MIN_MS_DELTA = MIN_DAY_DELTA * 24 * 3600 * 1000 MAX_MS_DELTA = MAX_DAY_DELTA * 24 * 3600 * 1000 def convert_year_month_safe(year, month): """ Convert year and month to datetimes, using pandas vectorized versions when the date range falls within the range supported by pandas. Other wise it falls back to a slower but more robust method using datetime. """ if year.max() < MAX_YEAR and year.min() > MIN_YEAR: return to_datetime(100 * year + month, format='%Y%m') else: index = getattr(year, 'index', None) return Series( [datetime.datetime(y, m, 1) for y, m in zip(year, month)], index=index) def convert_year_days_safe(year, days): """ Converts year (e.g. 1999) and days since the start of the year to a datetime or datetime64 Series """ if year.max() < (MAX_YEAR - 1) and year.min() > MIN_YEAR: return (to_datetime(year, format='%Y') + to_timedelta(days, unit='d')) else: index = getattr(year, 'index', None) value = [datetime.datetime(y, 1, 1) + relativedelta(days=int(d)) for y, d in zip(year, days)] return Series(value, index=index) def convert_delta_safe(base, deltas, unit): """ Convert base dates and deltas to datetimes, using pandas vectorized versions if the deltas satisfy restrictions required to be expressed as dates in pandas. """ index = getattr(deltas, 'index', None) if unit == 'd': if deltas.max() > MAX_DAY_DELTA or deltas.min() < MIN_DAY_DELTA: values = [base + relativedelta(days=int(d)) for d in deltas] return Series(values, index=index) elif unit == 'ms': if deltas.max() > MAX_MS_DELTA or deltas.min() < MIN_MS_DELTA: values = [base + relativedelta(microseconds=(int(d) * 1000)) for d in deltas] return Series(values, index=index) else: raise ValueError('format not understood') base = to_datetime(base) deltas = to_timedelta(deltas, unit=unit) return base + deltas # TODO: If/when pandas supports more than datetime64[ns], this should be # improved to use correct range, e.g. datetime[Y] for yearly bad_locs = np.isnan(dates) has_bad_values = False if bad_locs.any(): has_bad_values = True data_col = Series(dates) data_col[bad_locs] = 1.0 # Replace with NaT dates = dates.astype(np.int64) if fmt in ["%tc", "tc"]: # Delta ms relative to base base = stata_epoch ms = dates conv_dates = convert_delta_safe(base, ms, 'ms') elif fmt in ["%tC", "tC"]: from warnings import warn warn("Encountered %tC format. Leaving in Stata Internal Format.") conv_dates = Series(dates, dtype=np.object) if has_bad_values: conv_dates[bad_locs] = pd.NaT return conv_dates elif fmt in ["%td", "td", "%d", "d"]: # Delta days relative to base base = stata_epoch days = dates conv_dates = convert_delta_safe(base, days, 'd') elif fmt in ["%tw", "tw"]: # does not count leap days - 7 days is a week year = stata_epoch.year + dates // 52 days = (dates % 52) * 7 conv_dates = convert_year_days_safe(year, days) elif fmt in ["%tm", "tm"]: # Delta months relative to base year = stata_epoch.year + dates // 12 month = (dates % 12) + 1 conv_dates = convert_year_month_safe(year, month) elif fmt in ["%tq", "tq"]: # Delta quarters relative to base year = stata_epoch.year + dates // 4 month = (dates % 4) * 3 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt in ["%th", "th"]: # Delta half-years relative to base year = stata_epoch.year + dates // 2 month = (dates % 2) * 6 + 1 conv_dates = convert_year_month_safe(year, month) elif fmt in ["%ty", "ty"]: # Years -- not delta year = dates month = np.ones_like(dates) conv_dates = convert_year_month_safe(year, month) else: raise ValueError("Date fmt %s not understood" % fmt) if has_bad_values: # Restore NaT for bad values conv_dates[bad_locs] = NaT return conv_dates def _datetime_to_stata_elapsed_vec(dates, fmt): """ Convert from datetime to SIF. http://www.stata.com/help.cgi?datetime Parameters ---------- dates : Series Series or array containing datetime.datetime or datetime64[ns] to convert to the Stata Internal Format given by fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty """ index = dates.index NS_PER_DAY = 24 * 3600 * 1000 * 1000 * 1000 US_PER_DAY = NS_PER_DAY / 1000 def parse_dates_safe(dates, delta=False, year=False, days=False): d = {} if is_datetime64_dtype(dates.values): if delta: delta = dates - stata_epoch d['delta'] = delta.values.astype( np.int64) // 1000 # microseconds if days or year: dates = DatetimeIndex(dates) d['year'], d['month'] = dates.year, dates.month if days: days = (dates.astype(np.int64) - to_datetime(d['year'], format='%Y').astype(np.int64)) d['days'] = days // NS_PER_DAY elif infer_dtype(dates) == 'datetime': if delta: delta = dates.values - stata_epoch f = lambda x: \ US_PER_DAY * x.days + 1000000 * x.seconds + x.microseconds v = np.vectorize(f) d['delta'] = v(delta) if year: year_month = dates.apply(lambda x: 100 * x.year + x.month) d['year'] = year_month.values // 100 d['month'] = (year_month.values - d['year'] * 100) if days: f = lambda x: (x - datetime.datetime(x.year, 1, 1)).days v = np.vectorize(f) d['days'] = v(dates) else: raise ValueError('Columns containing dates must contain either ' 'datetime64, datetime.datetime or null values.') return DataFrame(d, index=index) bad_loc = isnull(dates) index = dates.index if bad_loc.any(): dates = Series(dates) if is_datetime64_dtype(dates): dates[bad_loc] = to_datetime(stata_epoch) else: dates[bad_loc] = stata_epoch if fmt in ["%tc", "tc"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta / 1000 elif fmt in ["%tC", "tC"]: from warnings import warn warn("Stata Internal Format tC not supported.") conv_dates = dates elif fmt in ["%td", "td"]: d = parse_dates_safe(dates, delta=True) conv_dates = d.delta // US_PER_DAY elif fmt in ["%tw", "tw"]: d = parse_dates_safe(dates, year=True, days=True) conv_dates = (52 * (d.year - stata_epoch.year) + d.days // 7) elif fmt in ["%tm", "tm"]: d = parse_dates_safe(dates, year=True) conv_dates = (12 * (d.year - stata_epoch.year) + d.month - 1) elif fmt in ["%tq", "tq"]: d = parse_dates_safe(dates, year=True) conv_dates = 4 * (d.year - stata_epoch.year) + (d.month - 1) // 3 elif fmt in ["%th", "th"]: d = parse_dates_safe(dates, year=True) conv_dates = 2 * (d.year - stata_epoch.year) + \ (d.month > 6).astype(np.int) elif fmt in ["%ty", "ty"]: d = parse_dates_safe(dates, year=True) conv_dates = d.year else: raise ValueError("Format %s is not a known Stata date format" % fmt) conv_dates = Series(conv_dates, dtype=np.float64) missing_value = struct.unpack('<d', b'\x00\x00\x00\x00\x00\x00\xe0\x7f')[0] conv_dates[bad_loc] = missing_value return Series(conv_dates, index=index) excessive_string_length_error = """ Fixed width strings in Stata .dta files are limited to 244 (or fewer) characters. Column '%s' does not satisfy this restriction. """ class PossiblePrecisionLoss(Warning): pass precision_loss_doc = """ Column converted from %s to %s, and some data are outside of the lossless conversion range. This may result in a loss of precision in the saved data. """ class ValueLabelTypeMismatch(Warning): pass value_label_mismatch_doc = """ Stata value labels (pandas categories) must be strings. Column {0} contains non-string labels which will be converted to strings. Please check that the Stata data file created has not lost information due to duplicate labels. """ class InvalidColumnName(Warning): pass invalid_name_doc = """ Not all pandas column names were valid Stata variable names. The following replacements have been made: {0} If this is not what you expect, please make sure you have Stata-compliant column names in your DataFrame (strings only, max 32 characters, only alphanumerics and underscores, no Stata reserved words) """ def _cast_to_stata_types(data): """Checks the dtypes of the columns of a pandas DataFrame for compatibility with the data types and ranges supported by Stata, and converts if necessary. Parameters ---------- data : DataFrame The DataFrame to check and convert Notes ----- Numeric columns in Stata must be one of int8, int16, int32, float32 or float64, with some additional value restrictions. int8 and int16 columns are checked for violations of the value restrictions and upcast if needed. int64 data is not usable in Stata, and so it is downcast to int32 whenever the value are in the int32 range, and sidecast to float64 when larger than this range. If the int64 values are outside of the range of those perfectly representable as float64 values, a warning is raised. bool columns are cast to int8. uint colums are converted to int of the same size if there is no loss in precision, other wise are upcast to a larger type. uint64 is currently not supported since it is concerted to object in a DataFrame. """ ws = '' # original, if small, if large conversion_data = ((np.bool, np.int8, np.int8), (np.uint8, np.int8, np.int16), (np.uint16, np.int16, np.int32), (np.uint32, np.int32, np.int64)) for col in data: dtype = data[col].dtype # Cast from unsupported types to supported types for c_data in conversion_data: if dtype == c_data[0]: if data[col].max() <= np.iinfo(c_data[1]).max: dtype = c_data[1] else: dtype = c_data[2] if c_data[2] == np.float64: # Warn if necessary if data[col].max() >= 2 ** 53: ws = precision_loss_doc % ('uint64', 'float64') data[col] = data[col].astype(dtype) # Check values and upcast if necessary if dtype == np.int8: if data[col].max() > 100 or data[col].min() < -127: data[col] = data[col].astype(np.int16) elif dtype == np.int16: if data[col].max() > 32740 or data[col].min() < -32767: data[col] = data[col].astype(np.int32) elif dtype == np.int64: if (data[col].max() <= 2147483620 and data[col].min() >= -2147483647): data[col] = data[col].astype(np.int32) else: data[col] = data[col].astype(np.float64) if data[col].max() >= 2 ** 53 or data[col].min() <= -2 ** 53: ws = precision_loss_doc % ('int64', 'float64') if ws: import warnings warnings.warn(ws, PossiblePrecisionLoss) return data class StataValueLabel(object): """ Parse a categorical column and prepare formatted output Parameters ----------- value : int8, int16, int32, float32 or float64 The Stata missing value code Attributes ---------- string : string String representation of the Stata missing value value : int8, int16, int32, float32 or float64 The original encoded missing value Methods ------- generate_value_label """ def __init__(self, catarray): self.labname = catarray.name categories = catarray.cat.categories self.value_labels = list(zip(np.arange(len(categories)), categories)) self.value_labels.sort(key=lambda x: x[0]) self.text_len = np.int32(0) self.off = [] self.val = [] self.txt = [] self.n = 0 # Compute lengths and setup lists of offsets and labels for vl in self.value_labels: category = vl[1] if not isinstance(category, string_types): category = str(category) import warnings warnings.warn(value_label_mismatch_doc.format(catarray.name), ValueLabelTypeMismatch) self.off.append(self.text_len) self.text_len += len(category) + 1 # +1 for the padding self.val.append(vl[0]) self.txt.append(category) self.n += 1 if self.text_len > 32000: raise ValueError('Stata value labels for a single variable must ' 'have a combined length less than 32,000 ' 'characters.') # Ensure int32 self.off = np.array(self.off, dtype=np.int32) self.val = np.array(self.val, dtype=np.int32) # Total length self.len = 4 + 4 + 4 * self.n + 4 * self.n + self.text_len def _encode(self, s): """ Python 3 compatability shim """ if compat.PY3: return s.encode(self._encoding) else: return s def generate_value_label(self, byteorder, encoding): """ Parameters ---------- byteorder : str Byte order of the output encoding : str File encoding Returns ------- value_label : bytes Bytes containing the formatted value label """ self._encoding = encoding bio = BytesIO() null_string = '\x00' null_byte = b'\x00' # len bio.write(struct.pack(byteorder + 'i', self.len)) # labname labname = self._encode(_pad_bytes(self.labname[:32], 33)) bio.write(labname) # padding - 3 bytes for i in range(3): bio.write(struct.pack('c', null_byte)) # value_label_table # n - int32 bio.write(struct.pack(byteorder + 'i', self.n)) # textlen - int32 bio.write(struct.pack(byteorder + 'i', self.text_len)) # off - int32 array (n elements) for offset in self.off: bio.write(struct.pack(byteorder + 'i', offset)) # val - int32 array (n elements) for value in self.val: bio.write(struct.pack(byteorder + 'i', value)) # txt - Text labels, null terminated for text in self.txt: bio.write(self._encode(text + null_string)) bio.seek(0) return bio.read() class StataMissingValue(StringMixin): """ An observation's missing value. Parameters ----------- value : int8, int16, int32, float32 or float64 The Stata missing value code Attributes ---------- string : string String representation of the Stata missing value value : int8, int16, int32, float32 or float64 The original encoded missing value Notes ----- More information: <http://www.stata.com/help.cgi?missing> Integer missing values make the code '.', '.a', ..., '.z' to the ranges 101 ... 127 (for int8), 32741 ... 32767 (for int16) and 2147483621 ... 2147483647 (for int32). Missing values for floating point data types are more complex but the pattern is simple to discern from the following table. np.float32 missing values (float in Stata) 0000007f . 0008007f .a 0010007f .b ... 00c0007f .x 00c8007f .y 00d0007f .z np.float64 missing values (double in Stata) 000000000000e07f . 000000000001e07f .a 000000000002e07f .b ... 000000000018e07f .x 000000000019e07f .y 00000000001ae07f .z """ # Construct a dictionary of missing values MISSING_VALUES = {} bases = (101, 32741, 2147483621) for b in bases: # Conversion to long to avoid hash issues on 32 bit platforms #8968 MISSING_VALUES[compat.long(b)] = '.' for i in range(1, 27): MISSING_VALUES[compat.long(i + b)] = '.' + chr(96 + i) float32_base = b'\x00\x00\x00\x7f' increment = struct.unpack('<i', b'\x00\x08\x00\x00')[0] for i in range(27): value = struct.unpack('<f', float32_base)[0] MISSING_VALUES[value] = '.' if i > 0: MISSING_VALUES[value] += chr(96 + i) int_value = struct.unpack('<i', struct.pack('<f', value))[ 0] + increment float32_base = struct.pack('<i', int_value) float64_base = b'\x00\x00\x00\x00\x00\x00\xe0\x7f' increment = struct.unpack('q', b'\x00\x00\x00\x00\x00\x01\x00\x00')[0] for i in range(27): value = struct.unpack('<d', float64_base)[0] MISSING_VALUES[value] = '.' if i > 0: MISSING_VALUES[value] += chr(96 + i) int_value = struct.unpack('q', struct.pack('<d', value))[0] + increment float64_base = struct.pack('q', int_value) BASE_MISSING_VALUES = {'int8': 101, 'int16': 32741, 'int32': 2147483621, 'float32': struct.unpack('<f', float32_base)[0], 'float64': struct.unpack('<d', float64_base)[0]} def __init__(self, value): self._value = value # Conversion to long to avoid hash issues on 32 bit platforms #8968 value = compat.long(value) if value < 2147483648 else float(value) self._str = self.MISSING_VALUES[value] string = property(lambda self: self._str, doc="The Stata representation of the missing value: " "'.', '.a'..'.z'") value = property(lambda self: self._value, doc='The binary representation of the missing value.') def __unicode__(self): return self.string def __repr__(self): # not perfect :-/ return "%s(%s)" % (self.__class__, self) def __eq__(self, other): return (isinstance(other, self.__class__) and self.string == other.string and self.value == other.value) @classmethod def get_base_missing_value(cls, dtype): if dtype == np.int8: value = cls.BASE_MISSING_VALUES['int8'] elif dtype == np.int16: value = cls.BASE_MISSING_VALUES['int16'] elif dtype == np.int32: value = cls.BASE_MISSING_VALUES['int32'] elif dtype == np.float32: value = cls.BASE_MISSING_VALUES['float32'] elif dtype == np.float64: value = cls.BASE_MISSING_VALUES['float64'] else: raise ValueError('Unsupported dtype') return value class StataParser(object): _default_encoding = 'iso-8859-1' def __init__(self, encoding): self._encoding = encoding # type code. # -------------------- # str1 1 = 0x01 # str2 2 = 0x02 # ... # str244 244 = 0xf4 # byte 251 = 0xfb (sic) # int 252 = 0xfc # long 253 = 0xfd # float 254 = 0xfe # double 255 = 0xff # -------------------- # NOTE: the byte type seems to be reserved for categorical variables # with a label, but the underlying variable is -127 to 100 # we're going to drop the label and cast to int self.DTYPE_MAP = \ dict( lzip(range(1, 245), ['a' + str(i) for i in range(1, 245)]) + [ (251, np.int8), (252, np.int16), (253, np.int32), (254, np.float32), (255, np.float64) ] ) self.DTYPE_MAP_XML = \ dict( [ (32768, np.uint8), # Keys to GSO (65526, np.float64), (65527, np.float32), (65528, np.int32), (65529, np.int16), (65530, np.int8) ] ) self.TYPE_MAP = lrange(251) + list('bhlfd') self.TYPE_MAP_XML = \ dict( [ # Not really a Q, unclear how to handle byteswap (32768, 'Q'), (65526, 'd'), (65527, 'f'), (65528, 'l'), (65529, 'h'), (65530, 'b') ] ) # NOTE: technically, some of these are wrong. there are more numbers # that can be represented. it's the 27 ABOVE and BELOW the max listed # numeric data type in [U] 12.2.2 of the 11.2 manual float32_min = b'\xff\xff\xff\xfe' float32_max = b'\xff\xff\xff\x7e' float64_min = b'\xff\xff\xff\xff\xff\xff\xef\xff' float64_max = b'\xff\xff\xff\xff\xff\xff\xdf\x7f' self.VALID_RANGE = { 'b': (-127, 100), 'h': (-32767, 32740), 'l': (-2147483647, 2147483620), 'f': (np.float32(struct.unpack('<f', float32_min)[0]), np.float32(struct.unpack('<f', float32_max)[0])), 'd': (np.float64(struct.unpack('<d', float64_min)[0]), np.float64(struct.unpack('<d', float64_max)[0])) } self.OLD_TYPE_MAPPING = { 98: 251, # byte 105: 252, # int 108: 253, # long 102: 254 # float # don't know old code for double } # These missing values are the generic '.' in Stata, and are used # to replace nans self.MISSING_VALUES = { 'b': 101, 'h': 32741, 'l': 2147483621, 'f': np.float32(struct.unpack('<f', b'\x00\x00\x00\x7f')[0]), 'd': np.float64( struct.unpack('<d', b'\x00\x00\x00\x00\x00\x00\xe0\x7f')[0]) } self.NUMPY_TYPE_MAP = { 'b': 'i1', 'h': 'i2', 'l': 'i4', 'f': 'f4', 'd': 'f8', 'Q': 'u8' } # Reserved words cannot be used as variable names self.RESERVED_WORDS = ('aggregate', 'array', 'boolean', 'break', 'byte', 'case', 'catch', 'class', 'colvector', 'complex', 'const', 'continue', 'default', 'delegate', 'delete', 'do', 'double', 'else', 'eltypedef', 'end', 'enum', 'explicit', 'export', 'external', 'float', 'for', 'friend', 'function', 'global', 'goto', 'if', 'inline', 'int', 'local', 'long', 'NULL', 'pragma', 'protected', 'quad', 'rowvector', 'short', 'typedef', 'typename', 'virtual') class StataReader(StataParser, BaseIterator): __doc__ = _stata_reader_doc def __init__(self, path_or_buf, convert_dates=True, convert_categoricals=True, index=None, convert_missing=False, preserve_dtypes=True, columns=None, order_categoricals=True, encoding='iso-8859-1', chunksize=None): super(StataReader, self).__init__(encoding) self.col_sizes = () # Arguments to the reader (can be temporarily overridden in # calls to read). self._convert_dates = convert_dates self._convert_categoricals = convert_categoricals self._index = index self._convert_missing = convert_missing self._preserve_dtypes = preserve_dtypes self._columns = columns self._order_categoricals = order_categoricals self._encoding = encoding self._chunksize = chunksize # State variables for the file self._has_string_data = False self._missing_values = False self._can_read_value_labels = False self._column_selector_set = False self._value_labels_read = False self._data_read = False self._dtype = None self._lines_read = 0 self._native_byteorder = _set_endianness(sys.byteorder) if isinstance(path_or_buf, str): path_or_buf, encoding, _ = get_filepath_or_buffer( path_or_buf, encoding=self._default_encoding ) if isinstance(path_or_buf, (str, compat.text_type, bytes)): self.path_or_buf = open(path_or_buf, 'rb') else: # Copy to BytesIO, and ensure no encoding contents = path_or_buf.read() try: contents = contents.encode(self._default_encoding) except: pass self.path_or_buf = BytesIO(contents) self._read_header() def __enter__(self): """ enter context manager """ return self def __exit__(self, exc_type, exc_value, traceback): """ exit context manager """ self.close() def close(self): """ close the handle if its open """ try: self.path_or_buf.close() except IOError: pass def _read_header(self): first_char = self.path_or_buf.read(1) if struct.unpack('c', first_char)[0] == b'<': self._read_new_header(first_char) else: self._read_old_header(first_char) self.has_string_data = len([x for x in self.typlist if type(x) is int]) > 0 # calculate size of a data record self.col_sizes = lmap(lambda x: self._calcsize(x), self.typlist) # remove format details from %td self.fmtlist = ["%td" if x.startswith("%td") else x for x in self.fmtlist] def _read_new_header(self, first_char): # The first part of the header is common to 117 and 118. self.path_or_buf.read(27) # stata_dta><header><release> self.format_version = int(self.path_or_buf.read(3)) if self.format_version not in [117, 118]: raise ValueError(_version_error) self.path_or_buf.read(21) # </release><byteorder> self.byteorder = self.path_or_buf.read(3) == "MSF" and '>' or '<' self.path_or_buf.read(15) # </byteorder><K> self.nvar = struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] self.path_or_buf.read(7) # </K><N> self.nobs = self._get_nobs() self.path_or_buf.read(11) # </N><label> self.data_label = self._get_data_label() self.path_or_buf.read(19) # </label><timestamp> self.time_stamp = self._get_time_stamp() self.path_or_buf.read(26) # </timestamp></header><map> self.path_or_buf.read(8) # 0x0000000000000000 self.path_or_buf.read(8) # position of <map> self._seek_vartypes = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 16 self._seek_varnames = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 10 self._seek_sortlist = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 10 self._seek_formats = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 9 self._seek_value_label_names = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 19 # Requires version-specific treatment self._seek_variable_labels = self._get_seek_variable_labels() self.path_or_buf.read(8) # <characteristics> self.data_location = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 6 self.seek_strls = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 7 self.seek_value_labels = struct.unpack( self.byteorder + 'q', self.path_or_buf.read(8))[0] + 14 self.typlist, self.dtyplist = self._get_dtypes(self._seek_vartypes) self.path_or_buf.seek(self._seek_varnames) self.varlist = self._get_varlist() self.path_or_buf.seek(self._seek_sortlist) self.srtlist = struct.unpack( self.byteorder + ('h' * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)) )[:-1] self.path_or_buf.seek(self._seek_formats) self.fmtlist = self._get_fmtlist() self.path_or_buf.seek(self._seek_value_label_names) self.lbllist = self._get_lbllist() self.path_or_buf.seek(self._seek_variable_labels) self._variable_labels = self._get_variable_labels() # Get data type information, works for versions 117-118. def _get_dtypes(self, seek_vartypes): self.path_or_buf.seek(seek_vartypes) raw_typlist = [struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] for i in range(self.nvar)] def f(typ): if typ <= 2045: return typ try: return self.TYPE_MAP_XML[typ] except KeyError: raise ValueError("cannot convert stata types [{0}]". format(typ)) typlist = [f(x) for x in raw_typlist] def f(typ): if typ <= 2045: return str(typ) try: return self.DTYPE_MAP_XML[typ] except KeyError: raise ValueError("cannot convert stata dtype [{0}]" .format(typ)) dtyplist = [f(x) for x in raw_typlist] return typlist, dtyplist def _get_varlist(self): if self.format_version == 117: b = 33 elif self.format_version == 118: b = 129 return [self._null_terminate(self.path_or_buf.read(b)) for i in range(self.nvar)] # Returns the format list def _get_fmtlist(self): if self.format_version == 118: b = 57 elif self.format_version > 113: b = 49 elif self.format_version > 104: b = 12 else: b = 7 return [self._null_terminate(self.path_or_buf.read(b)) for i in range(self.nvar)] # Returns the label list def _get_lbllist(self): if self.format_version >= 118: b = 129 elif self.format_version > 108: b = 33 else: b = 9 return [self._null_terminate(self.path_or_buf.read(b)) for i in range(self.nvar)] def _get_variable_labels(self): if self.format_version == 118: vlblist = [self._decode(self.path_or_buf.read(321)) for i in range(self.nvar)] elif self.format_version > 105: vlblist = [self._null_terminate(self.path_or_buf.read(81)) for i in range(self.nvar)] else: vlblist = [self._null_terminate(self.path_or_buf.read(32)) for i in range(self.nvar)] return vlblist def _get_nobs(self): if self.format_version == 118: return struct.unpack(self.byteorder + 'Q', self.path_or_buf.read(8))[0] else: return struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] def _get_data_label(self): if self.format_version == 118: strlen = struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] return self._decode(self.path_or_buf.read(strlen)) elif self.format_version == 117: strlen = struct.unpack('b', self.path_or_buf.read(1))[0] return self._null_terminate(self.path_or_buf.read(strlen)) elif self.format_version > 105: return self._null_terminate(self.path_or_buf.read(81)) else: return self._null_terminate(self.path_or_buf.read(32)) def _get_time_stamp(self): if self.format_version == 118: strlen = struct.unpack('b', self.path_or_buf.read(1))[0] return self.path_or_buf.read(strlen).decode("utf-8") elif self.format_version == 117: strlen = struct.unpack('b', self.path_or_buf.read(1))[0] return self._null_terminate(self.path_or_buf.read(strlen)) elif self.format_version > 104: return self._null_terminate(self.path_or_buf.read(18)) else: raise ValueError() def _get_seek_variable_labels(self): if self.format_version == 117: self.path_or_buf.read(8) # <variable_lables>, throw away # Stata 117 data files do not follow the described format. This is # a work around that uses the previous label, 33 bytes for each # variable, 20 for the closing tag and 17 for the opening tag return self._seek_value_label_names + (33 * self.nvar) + 20 + 17 elif self.format_version == 118: return struct.unpack(self.byteorder + 'q', self.path_or_buf.read(8))[0] + 17 else: raise ValueError() def _read_old_header(self, first_char): self.format_version = struct.unpack('b', first_char)[0] if self.format_version not in [104, 105, 108, 113, 114, 115]: raise ValueError(_version_error) self.byteorder = struct.unpack('b', self.path_or_buf.read(1))[ 0] == 0x1 and '>' or '<' self.filetype = struct.unpack('b', self.path_or_buf.read(1))[0] self.path_or_buf.read(1) # unused self.nvar = struct.unpack(self.byteorder + 'H', self.path_or_buf.read(2))[0] self.nobs = self._get_nobs() self.data_label = self._get_data_label() self.time_stamp = self._get_time_stamp() # descriptors if self.format_version > 108: typlist = [ord(self.path_or_buf.read(1)) for i in range(self.nvar)] else: buf = self.path_or_buf.read(self.nvar) typlistb = np.frombuffer(buf, dtype=np.uint8) typlist = [] for tp in typlistb: if tp in self.OLD_TYPE_MAPPING: typlist.append(self.OLD_TYPE_MAPPING[tp]) else: typlist.append(tp - 127) # string try: self.typlist = [self.TYPE_MAP[typ] for typ in typlist] except: raise ValueError("cannot convert stata types [{0}]" .format(','.join(typlist))) try: self.dtyplist = [self.DTYPE_MAP[typ] for typ in typlist] except: raise ValueError("cannot convert stata dtypes [{0}]" .format(','.join(typlist))) if self.format_version > 108: self.varlist = [self._null_terminate(self.path_or_buf.read(33)) for i in range(self.nvar)] else: self.varlist = [self._null_terminate(self.path_or_buf.read(9)) for i in range(self.nvar)] self.srtlist = struct.unpack( self.byteorder + ('h' * (self.nvar + 1)), self.path_or_buf.read(2 * (self.nvar + 1)) )[:-1] self.fmtlist = self._get_fmtlist() self.lbllist = self._get_lbllist() self._variable_labels = self._get_variable_labels() # ignore expansion fields (Format 105 and later) # When reading, read five bytes; the last four bytes now tell you # the size of the next read, which you discard. You then continue # like this until you read 5 bytes of zeros. if self.format_version > 104: while True: data_type = struct.unpack(self.byteorder + 'b', self.path_or_buf.read(1))[0] if self.format_version > 108: data_len = struct.unpack(self.byteorder + 'i', self.path_or_buf.read(4))[0] else: data_len = struct.unpack(self.byteorder + 'h', self.path_or_buf.read(2))[0] if data_type == 0: break self.path_or_buf.read(data_len) # necessary data to continue parsing self.data_location = self.path_or_buf.tell() def _calcsize(self, fmt): return (type(fmt) is int and fmt or struct.calcsize(self.byteorder + fmt)) def _decode(self, s): s = s.partition(b"\0")[0] return s.decode('utf-8') def _null_terminate(self, s): if compat.PY3 or self._encoding is not None: # have bytes not strings, so must decode s = s.partition(b"\0")[0] return s.decode(self._encoding or self._default_encoding) else: null_byte = "\0" try: return s.lstrip(null_byte)[:s.index(null_byte)] except: return s def _read_value_labels(self): if self.format_version <= 108: # Value labels are not supported in version 108 and earlier. return if self._value_labels_read: # Don't read twice return if self.format_version >= 117: self.path_or_buf.seek(self.seek_value_labels) else: offset = self.nobs * self._dtype.itemsize self.path_or_buf.seek(self.data_location + offset) self._value_labels_read = True self.value_label_dict = dict() while True: if self.format_version >= 117: if self.path_or_buf.read(5) == b'</val': # <lbl> break # end of value label table slength = self.path_or_buf.read(4) if not slength: break # end of value label table (format < 117) if self.format_version <= 117: labname = self._null_terminate(self.path_or_buf.read(33)) else: labname = self._decode(self.path_or_buf.read(129)) self.path_or_buf.read(3) # padding n = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] txtlen = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] off = np.frombuffer(self.path_or_buf.read(4 * n), dtype=self.byteorder + "i4", count=n) val = np.frombuffer(self.path_or_buf.read(4 * n), dtype=self.byteorder + "i4", count=n) ii = np.argsort(off) off = off[ii] val = val[ii] txt = self.path_or_buf.read(txtlen) self.value_label_dict[labname] = dict() for i in range(n): end = off[i + 1] if i < n - 1 else txtlen if self.format_version <= 117: self.value_label_dict[labname][val[i]] = ( self._null_terminate(txt[off[i]:end])) else: self.value_label_dict[labname][val[i]] = ( self._decode(txt[off[i]:end])) if self.format_version >= 117: self.path_or_buf.read(6) # </lbl> self._value_labels_read = True def _read_strls(self): self.path_or_buf.seek(self.seek_strls) self.GSO = {0: ''} while True: if self.path_or_buf.read(3) != b'GSO': break if self.format_version == 117: v_o = struct.unpack(self.byteorder + 'Q', self.path_or_buf.read(8))[0] else: buf = self.path_or_buf.read(12) # Only tested on little endian file on little endian machine. if self.byteorder == '<': buf = buf[0:2] + buf[4:10] else: buf = buf[0:2] + buf[6:] v_o = struct.unpack('Q', buf)[0] typ = struct.unpack('B', self.path_or_buf.read(1))[0] length = struct.unpack(self.byteorder + 'I', self.path_or_buf.read(4))[0] va = self.path_or_buf.read(length) if typ == 130: encoding = 'utf-8' if self.format_version == 117: encoding = self._encoding or self._default_encoding va = va[0:-1].decode(encoding) self.GSO[v_o] = va # legacy @Appender('DEPRECATED: ' + _data_method_doc)
[docs] def data(self, **kwargs): import warnings warnings.warn("'data' is deprecated, use 'read' instead") if self._data_read: raise Exception("Data has already been read.") self._data_read = True return self.read(None, **kwargs)
def __next__(self): return self.read(nrows=self._chunksize or 1) def get_chunk(self, size=None): """ Reads lines from Stata file and returns as dataframe Parameters ---------- size : int, defaults to None Number of lines to read. If None, reads whole file. Returns ------- DataFrame """ if size is None: size = self._chunksize return self.read(nrows=size) @Appender(_read_method_doc) def read(self, nrows=None, convert_dates=None, convert_categoricals=None, index=None, convert_missing=None, preserve_dtypes=None, columns=None, order_categoricals=None): # Handle empty file or chunk. If reading incrementally raise # StopIteration. If reading the whole thing return an empty # data frame. if (self.nobs == 0) and (nrows is None): self._can_read_value_labels = True self._data_read = True return DataFrame(columns=self.varlist) # Handle options if convert_dates is None: convert_dates = self._convert_dates if convert_categoricals is None: convert_categoricals = self._convert_categoricals if convert_missing is None: convert_missing = self._convert_missing if preserve_dtypes is None: preserve_dtypes = self._preserve_dtypes if columns is None: columns = self._columns if order_categoricals is None: order_categoricals = self._order_categoricals if nrows is None: nrows = self.nobs if (self.format_version >= 117) and (self._dtype is None): self._can_read_value_labels = True self._read_strls() # Setup the dtype. if self._dtype is None: dtype = [] # Convert struct data types to numpy data type for i, typ in enumerate(self.typlist): if typ in self.NUMPY_TYPE_MAP: dtype.append(('s' + str(i), self.byteorder + self.NUMPY_TYPE_MAP[typ])) else: dtype.append(('s' + str(i), 'S' + str(typ))) dtype = np.dtype(dtype) self._dtype = dtype # Read data dtype = self._dtype max_read_len = (self.nobs - self._lines_read) * dtype.itemsize read_len = nrows * dtype.itemsize read_len = min(read_len, max_read_len) if read_len <= 0: # Iterator has finished, should never be here unless # we are reading the file incrementally if convert_categoricals: self._read_value_labels() raise StopIteration offset = self._lines_read * dtype.itemsize self.path_or_buf.seek(self.data_location + offset) read_lines = min(nrows, self.nobs - self._lines_read) data = np.frombuffer(self.path_or_buf.read(read_len), dtype=dtype, count=read_lines) self._lines_read += read_lines if self._lines_read == self.nobs: self._can_read_value_labels = True self._data_read = True # if necessary, swap the byte order to native here if self.byteorder != self._native_byteorder: data = data.byteswap().newbyteorder() if convert_categoricals: self._read_value_labels() if len(data) == 0: data = DataFrame(columns=self.varlist, index=index) else: data = DataFrame.from_records(data, index=index) data.columns = self.varlist # If index is not specified, use actual row number rather than # restarting at 0 for each chunk. if index is None: ix = np.arange(self._lines_read - read_lines, self._lines_read) data = data.set_index(ix) if columns is not None: data = self._do_select_columns(data, columns) # Decode strings for col, typ in zip(data, self.typlist): if type(typ) is int: data[col] = data[col].apply( self._null_terminate, convert_dtype=True) data = self._insert_strls(data) cols_ = np.where(self.dtyplist)[0] # Convert columns (if needed) to match input type index = data.index requires_type_conversion = False data_formatted = [] for i in cols_: if self.dtyplist[i] is not None: col = data.columns[i] dtype = data[col].dtype if (dtype != np.dtype(object)) and (dtype != self.dtyplist[i]): requires_type_conversion = True data_formatted.append( (col, Series(data[col], index, self.dtyplist[i]))) else: data_formatted.append((col, data[col])) if requires_type_conversion: data = DataFrame.from_items(data_formatted) del data_formatted self._do_convert_missing(data, convert_missing) if convert_dates: cols = np.where(lmap(lambda x: x in _date_formats, self.fmtlist))[0] for i in cols: col = data.columns[i] data[col] = _stata_elapsed_date_to_datetime_vec( data[col], self.fmtlist[i]) if convert_categoricals and self.format_version > 108: data = self._do_convert_categoricals(data, self.value_label_dict, self.lbllist, order_categoricals) if not preserve_dtypes: retyped_data = [] convert = False for col in data: dtype = data[col].dtype if dtype in (np.float16, np.float32): dtype = np.float64 convert = True elif dtype in (np.int8, np.int16, np.int32): dtype = np.int64 convert = True retyped_data.append((col, data[col].astype(dtype))) if convert: data = DataFrame.from_items(retyped_data) return data def _do_convert_missing(self, data, convert_missing): # Check for missing values, and replace if found for i, colname in enumerate(data): fmt = self.typlist[i] if fmt not in self.VALID_RANGE: continue nmin, nmax = self.VALID_RANGE[fmt] series = data[colname] missing = np.logical_or(series < nmin, series > nmax) if not missing.any(): continue if convert_missing: # Replacement follows Stata notation missing_loc = np.argwhere(missing) umissing, umissing_loc = np.unique(series[missing], return_inverse=True) replacement = Series(series, dtype=np.object) for j, um in enumerate(umissing): missing_value = StataMissingValue(um) loc = missing_loc[umissing_loc == j] replacement.iloc[loc] = missing_value else: # All replacements are identical dtype = series.dtype if dtype not in (np.float32, np.float64): dtype = np.float64 replacement = Series(series, dtype=dtype) replacement[missing] = np.nan data[colname] = replacement def _insert_strls(self, data): if not hasattr(self, 'GSO') or len(self.GSO) == 0: return data for i, typ in enumerate(self.typlist): if typ != 'Q': continue data.iloc[:, i] = [self.GSO[k] for k in data.iloc[:, i]] return data def _do_select_columns(self, data, columns): if not self._column_selector_set: column_set = set(columns) if len(column_set) != len(columns): raise ValueError('columns contains duplicate entries') unmatched = column_set.difference(data.columns) if unmatched: raise ValueError('The following columns were not found in the ' 'Stata data set: ' + ', '.join(list(unmatched))) # Copy information for retained columns for later processing dtyplist = [] typlist = [] fmtlist = [] lbllist = [] for col in columns: i = data.columns.get_loc(col) dtyplist.append(self.dtyplist[i]) typlist.append(self.typlist[i]) fmtlist.append(self.fmtlist[i]) lbllist.append(self.lbllist[i]) self.dtyplist = dtyplist self.typlist = typlist self.fmtlist = fmtlist self.lbllist = lbllist self._column_selector_set = True return data[columns] def _do_convert_categoricals(self, data, value_label_dict, lbllist, order_categoricals): """ Converts categorical columns to Categorical type. """ value_labels = list(compat.iterkeys(value_label_dict)) cat_converted_data = [] for col, label in zip(data, lbllist): if label in value_labels: # Explicit call with ordered=True cat_data = Categorical(data[col], ordered=order_categoricals) categories = [] for category in cat_data.categories: if category in value_label_dict[label]: categories.append(value_label_dict[label][category]) else: categories.append(category) # Partially labeled cat_data.categories = categories # TODO: is the next line needed above in the data(...) method? cat_data = Series(cat_data, index=data.index) cat_converted_data.append((col, cat_data)) else: cat_converted_data.append((col, data[col])) data = DataFrame.from_items(cat_converted_data) return data
[docs] def data_label(self): """Returns data label of Stata file""" return self.data_label
[docs] def variable_labels(self): """Returns variable labels as a dict, associating each variable name with corresponding label """ return dict(zip(self.varlist, self._variable_labels))
[docs] def value_labels(self): """Returns a dict, associating each variable name a dict, associating each value its corresponding label """ if not self._value_labels_read: self._read_value_labels() return self.value_label_dict
def _open_file_binary_write(fname, encoding): if hasattr(fname, 'write'): # if 'b' not in fname.mode: return fname return open(fname, "wb") def _set_endianness(endianness): if endianness.lower() in ["<", "little"]: return "<" elif endianness.lower() in [">", "big"]: return ">" else: # pragma : no cover raise ValueError("Endianness %s not understood" % endianness) def _pad_bytes(name, length): """ Takes a char string and pads it with null bytes until it's length chars """ return name + "\x00" * (length - len(name)) def _convert_datetime_to_stata_type(fmt): """ Converts from one of the stata date formats to a type in TYPE_MAP """ if fmt in ["tc", "%tc", "td", "%td", "tw", "%tw", "tm", "%tm", "tq", "%tq", "th", "%th", "ty", "%ty"]: return np.float64 # Stata expects doubles for SIFs else: raise NotImplementedError("Format %s not implemented" % fmt) def _maybe_convert_to_int_keys(convert_dates, varlist): new_dict = {} for key in convert_dates: if not convert_dates[key].startswith("%"): # make sure proper fmts convert_dates[key] = "%" + convert_dates[key] if key in varlist: new_dict.update({varlist.index(key): convert_dates[key]}) else: if not isinstance(key, int): raise ValueError("convert_dates key must be a " "column or an integer") new_dict.update({key: convert_dates[key]}) return new_dict def _dtype_to_stata_type(dtype, column): """ Converts dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length Pandas Stata 251 - chr(251) - for int8 byte 252 - chr(252) - for int16 int 253 - chr(253) - for int32 long 254 - chr(254) - for float32 float 255 - chr(255) - for double double If there are dates to convert, then dtype will already have the correct type inserted. """ # TODO: expand to handle datetime to integer conversion if dtype.type == np.string_: return chr(dtype.itemsize) elif dtype.type == np.object_: # try to coerce it to the biggest string # not memory efficient, what else could we # do? itemsize = max_len_string_array(_ensure_object(column.values)) return chr(max(itemsize, 1)) elif dtype == np.float64: return chr(255) elif dtype == np.float32: return chr(254) elif dtype == np.int32: return chr(253) elif dtype == np.int16: return chr(252) elif dtype == np.int8: return chr(251) else: # pragma : no cover raise NotImplementedError("Data type %s not supported." % dtype) def _dtype_to_default_stata_fmt(dtype, column): """ Maps numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are object -> "%DDs" where DD is the length of the string. If not a string, raise ValueError float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%12.0g" int16 -> "%8.0g" int8 -> "%8.0g" """ # TODO: Refactor to combine type with format # TODO: expand this to handle a default datetime format? if dtype.type == np.object_: inferred_dtype = infer_dtype(column.dropna()) if not (inferred_dtype in ('string', 'unicode') or len(column) == 0): raise ValueError('Writing general object arrays is not supported') itemsize = max_len_string_array(_ensure_object(column.values)) if itemsize > 244: raise ValueError(excessive_string_length_error % column.name) return "%" + str(max(itemsize, 1)) + "s" elif dtype == np.float64: return "%10.0g" elif dtype == np.float32: return "%9.0g" elif dtype == np.int32: return "%12.0g" elif dtype == np.int8 or dtype == np.int16: return "%8.0g" else: # pragma : no cover raise NotImplementedError("Data type %s not supported." % dtype) class StataWriter(StataParser): """ A class for writing Stata binary dta files Parameters ---------- fname : str or buffer String path of file-like object data : DataFrame Input to save convert_dates : dict Dictionary mapping columns containing datetime types to stata internal format to use when wirting the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either an integer or a name. Datetime columns that do not have a conversion type specified will be converted to 'tc'. Raises NotImplementedError if a datetime column has timezone information write_index : bool Write the index to Stata dataset. encoding : str Default is latin-1. Unicode is not supported byteorder : str Can be ">", "<", "little", or "big". default is `sys.byteorder` time_stamp : datetime A datetime to use as file creation date. Default is the current time dataset_label : str A label for the data set. Must be 80 characters or smaller. variable_labels : dict Dictionary containing columns as keys and variable labels as values. Each label must be 80 characters or smaller. .. versionadded:: 0.19.0 Returns ------- writer : StataWriter instance The StataWriter instance has a write_file method, which will write the file to the given `fname`. Raises ------ NotImplementedError * If datetimes contain timezone information ValueError * Columns listed in convert_dates are noth either datetime64[ns] or datetime.datetime * Column dtype is not representable in Stata * Column listed in convert_dates is not in DataFrame * Categorical label contains more than 32,000 characters Examples -------- >>> import pandas as pd >>> data = pd.DataFrame([[1.0, 1]], columns=['a', 'b']) >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> from datetime import datetime >>> data = pd.DataFrame([[datetime(2000,1,1)]], columns=['date']) >>> writer = StataWriter('./date_data_file.dta', data, {'date' : 'tw'}) >>> writer.write_file() """ def __init__(self, fname, data, convert_dates=None, write_index=True, encoding="latin-1", byteorder=None, time_stamp=None, data_label=None, variable_labels=None): super(StataWriter, self).__init__(encoding) self._convert_dates = {} if convert_dates is None else convert_dates self._write_index = write_index self._time_stamp = time_stamp self._data_label = data_label self._variable_labels = variable_labels # attach nobs, nvars, data, varlist, typlist self._prepare_pandas(data) if byteorder is None: byteorder = sys.byteorder self._byteorder = _set_endianness(byteorder) self._file = _open_file_binary_write( fname, self._encoding or self._default_encoding ) self.type_converters = {253: np.int32, 252: np.int16, 251: np.int8} def _write(self, to_write): """ Helper to call encode before writing to file for Python 3 compat. """ if compat.PY3: self._file.write(to_write.encode(self._encoding or self._default_encoding)) else: self._file.write(to_write) def _prepare_categoricals(self, data): """Check for categorical columns, retain categorical information for Stata file and convert categorical data to int""" is_cat = [is_categorical_dtype(data[col]) for col in data] self._is_col_cat = is_cat self._value_labels = [] if not any(is_cat): return data get_base_missing_value = StataMissingValue.get_base_missing_value index = data.index data_formatted = [] for col, col_is_cat in zip(data, is_cat): if col_is_cat: self._value_labels.append(StataValueLabel(data[col])) dtype = data[col].cat.codes.dtype if dtype == np.int64: raise ValueError('It is not possible to export ' 'int64-based categorical data to Stata.') values = data[col].cat.codes.values.copy() # Upcast if needed so that correct missing values can be set if values.max() >= get_base_missing_value(dtype): if dtype == np.int8: dtype = np.int16 elif dtype == np.int16: dtype = np.int32 else: dtype = np.float64 values = np.array(values, dtype=dtype) # Replace missing values with Stata missing value for type values[values == -1] = get_base_missing_value(dtype) data_formatted.append((col, values, index)) else: data_formatted.append((col, data[col])) return DataFrame.from_items(data_formatted) def _replace_nans(self, data): # return data """Checks floating point data columns for nans, and replaces these with the generic Stata for missing value (.)""" for c in data: dtype = data[c].dtype if dtype in (np.float32, np.float64): if dtype == np.float32: replacement = self.MISSING_VALUES['f'] else: replacement = self.MISSING_VALUES['d'] data[c] = data[c].fillna(replacement) return data def _check_column_names(self, data): """ Checks column names to ensure that they are valid Stata column names. This includes checks for: * Non-string names * Stata keywords * Variables that start with numbers * Variables with names that are too long When an illegal variable name is detected, it is converted, and if dates are exported, the variable name is propagated to the date conversion dictionary """ converted_names = [] columns = list(data.columns) original_columns = columns[:] duplicate_var_id = 0 for j, name in enumerate(columns): orig_name = name if not isinstance(name, string_types): name = text_type(name) for c in name: if (c < 'A' or c > 'Z') and (c < 'a' or c > 'z') and \ (c < '0' or c > '9') and c != '_': name = name.replace(c, '_') # Variable name must not be a reserved word if name in self.RESERVED_WORDS: name = '_' + name # Variable name may not start with a number if name[0] >= '0' and name[0] <= '9': name = '_' + name name = name[:min(len(name), 32)] if not name == orig_name: # check for duplicates while columns.count(name) > 0: # prepend ascending number to avoid duplicates name = '_' + str(duplicate_var_id) + name name = name[:min(len(name), 32)] duplicate_var_id += 1 # need to possibly encode the orig name if its unicode try: orig_name = orig_name.encode('utf-8') except: pass converted_names.append( '{0} -> {1}'.format(orig_name, name)) columns[j] = name data.columns = columns # Check date conversion, and fix key if needed if self._convert_dates: for c, o in zip(columns, original_columns): if c != o: self._convert_dates[c] = self._convert_dates[o] del self._convert_dates[o] if converted_names: import warnings ws = invalid_name_doc.format('\n '.join(converted_names)) warnings.warn(ws, InvalidColumnName) return data def _prepare_pandas(self, data): # NOTE: we might need a different API / class for pandas objects so # we can set different semantics - handle this with a PR to pandas.io data = data.copy() if self._write_index: data = data.reset_index() # Ensure column names are strings data = self._check_column_names(data) # Check columns for compatibility with stata, upcast if necessary data = _cast_to_stata_types(data) # Replace NaNs with Stata missing values data = self._replace_nans(data) # Convert categoricals to int data, and strip labels data = self._prepare_categoricals(data) self.nobs, self.nvar = data.shape self.data = data self.varlist = data.columns.tolist() dtypes = data.dtypes # Ensure all date columns are converted for col in data: if col in self._convert_dates: continue if is_datetime64_dtype(data[col]): self._convert_dates[col] = 'tc' self._convert_dates = _maybe_convert_to_int_keys(self._convert_dates, self.varlist) for key in self._convert_dates: new_type = _convert_datetime_to_stata_type( self._convert_dates[key] ) dtypes[key] = np.dtype(new_type) self.typlist = [] self.fmtlist = [] for col, dtype in dtypes.iteritems(): self.fmtlist.append(_dtype_to_default_stata_fmt(dtype, data[col])) self.typlist.append(_dtype_to_stata_type(dtype, data[col])) # set the given format for the datetime cols if self._convert_dates is not None: for key in self._convert_dates: self.fmtlist[key] = self._convert_dates[key]
[docs] def write_file(self): self._write_header(time_stamp=self._time_stamp, data_label=self._data_label) self._write_descriptors() self._write_variable_labels() # write 5 zeros for expansion fields self._write(_pad_bytes("", 5)) self._prepare_data() self._write_data() self._write_value_labels() self._file.close()
def _write_value_labels(self): for vl in self._value_labels: self._file.write(vl.generate_value_label(self._byteorder, self._encoding)) def _write_header(self, data_label=None, time_stamp=None): byteorder = self._byteorder # ds_format - just use 114 self._file.write(struct.pack("b", 114)) # byteorder self._write(byteorder == ">" and "\x01" or "\x02") # filetype self._write("\x01") # unused self._write("\x00") # number of vars, 2 bytes self._file.write(struct.pack(byteorder + "h", self.nvar)[:2]) # number of obs, 4 bytes self._file.write(struct.pack(byteorder + "i", self.nobs)[:4]) # data label 81 bytes, char, null terminated if data_label is None: self._file.write(self._null_terminate(_pad_bytes("", 80))) else: self._file.write( self._null_terminate(_pad_bytes(data_label[:80], 80)) ) # time stamp, 18 bytes, char, null terminated # format dd Mon yyyy hh:mm if time_stamp is None: time_stamp = datetime.datetime.now() elif not isinstance(time_stamp, datetime.datetime): raise ValueError("time_stamp should be datetime type") self._file.write( self._null_terminate(time_stamp.strftime("%d %b %Y %H:%M")) ) def _write_descriptors(self, typlist=None, varlist=None, srtlist=None, fmtlist=None, lbllist=None): nvar = self.nvar # typlist, length nvar, format byte array for typ in self.typlist: self._write(typ) # varlist names are checked by _check_column_names # varlist, requires null terminated for name in self.varlist: name = self._null_terminate(name, True) name = _pad_bytes(name[:32], 33) self._write(name) # srtlist, 2*(nvar+1), int array, encoded by byteorder srtlist = _pad_bytes("", 2 * (nvar + 1)) self._write(srtlist) # fmtlist, 49*nvar, char array for fmt in self.fmtlist: self._write(_pad_bytes(fmt, 49)) # lbllist, 33*nvar, char array for i in range(nvar): # Use variable name when categorical if self._is_col_cat[i]: name = self.varlist[i] name = self._null_terminate(name, True) name = _pad_bytes(name[:32], 33) self._write(name) else: # Default is empty label self._write(_pad_bytes("", 33)) def _write_variable_labels(self): # Missing labels are 80 blank characters plus null termination blank = _pad_bytes('', 81) if self._variable_labels is None: for i in range(self.nvar): self._write(blank) return for col in self.data: if col in self._variable_labels: label = self._variable_labels[col] if len(label) > 80: raise ValueError('Variable labels must be 80 characters ' 'or fewer') is_latin1 = all(ord(c) < 256 for c in label) if not is_latin1: raise ValueError('Variable labels must contain only ' 'characters that can be encoded in ' 'Latin-1') self._write(_pad_bytes(label, 81)) else: self._write(blank) def _prepare_data(self): data = self.data typlist = self.typlist convert_dates = self._convert_dates # 1. Convert dates if self._convert_dates is not None: for i, col in enumerate(data): if i in convert_dates: data[col] = _datetime_to_stata_elapsed_vec(data[col], self.fmtlist[i]) # 2. Convert bad string data to '' and pad to correct length dtype = [] data_cols = [] has_strings = False for i, col in enumerate(data): typ = ord(typlist[i]) if typ <= 244: has_strings = True data[col] = data[col].fillna('').apply(_pad_bytes, args=(typ,)) stype = 'S%d' % typ dtype.append(('c' + str(i), stype)) string = data[col].str.encode(self._encoding) data_cols.append(string.values.astype(stype)) else: dtype.append(('c' + str(i), data[col].dtype)) data_cols.append(data[col].values) dtype = np.dtype(dtype) if has_strings: self.data = np.fromiter(zip(*data_cols), dtype=dtype) else: self.data = data.to_records(index=False) def _write_data(self): data = self.data data.tofile(self._file) def _null_terminate(self, s, as_string=False): null_byte = '\x00' if compat.PY3 and not as_string: s += null_byte return s.encode(self._encoding) else: s += null_byte return s